Find the value of \boldsymbol{k} which makes the following system of equations inconsistent:

$$
\begin{aligned}
& x+2 y+\boldsymbol{k} z=-1 \\
& 2 x+y-z=3 \\
& \boldsymbol{k} x-2 y+z=1
\end{aligned}
$$

$$
\begin{array}{ll}
x+2 y+\boldsymbol{k} z=-1 & A \\
2 x+y-z=3 & B \\
\boldsymbol{k} x-2 y+z=1 & C
\end{array}
$$

Eliminate y

$$
\begin{array}{rll}
A+C & (1+k) x+(1+k) z=0 & \\
B \times 2 & 4 x+2 y-2 z=6 & \\
C & k x-2 y+z=1 & \\
B \times 2+C(4+k) x-z=7 & \\
& \\
(1+k) x+(1+k) z=0 & A+C \\
(4+k) x-z & =7 & B \times 2+C
\end{array}
$$

Equate coefficients of Z

$$
\begin{aligned}
(B \times 2+C) \times-(1+k)-(1+k)(4+k) x+(1+k) z & =-7(1+k) & & (B \times 2+C) \times-(1+k) \\
(1+k) x+(1+k) z & =0 & & A+C
\end{aligned}
$$

For no intersection

```
\(-(1+k)(4+k)=(1+k)\)
and
\(-7(1+k) \neq 0\)
```

$$
\begin{aligned}
\text { Solve } & -(1+k)(4+k)=(1+k) \\
& -4-5 k-k^{2}=1+k \\
& 0=k^{2}+6 k+5 \\
& 0=(k+1)(k+5) \\
& k=-1, k=-5
\end{aligned}
$$

And $k=-1$
$-7(1+k) \neq 0-7(1+(-1))=0$
$k=-5$

$$
-7(1+(-5))=28 \neq 0
$$

Therefore $\boldsymbol{k}=\mathbf{- 5}$

