Find the value of k which makes the following system of equations inconsistent:

$$x + 2y + kz = -1$$

 $2x + y - z = 3$
 $kx - 2y + z = 1$

$$x + 2y + kz = -1$$
 A
 $2x + y - z = 3$ B
 $kx - 2y + z = 1$ C

Eliminate y

$$A + C (1+k)x + (1+k)z = 0$$

$$B \times 2 \ 4x + 2y - 2z = 6$$

 $C \ kx - 2y + z = 1$
 $B \times 2 + C \ (4 + k)x - z = 7$

$$(1+k)x + (1+k)z = 0$$
 $A+C$
 $(4+k)x - z = 7$ $B \times 2 + C$

Equate coefficients of z

$$(B \times 2 + C) \times -(1+k) -(1+k)(4+k)x + (1+k)z = -7(1+k) \qquad (B \times 2 + C) \times -(1+k)$$
$$(1+k)x + (1+k)z = 0 \qquad A + C$$

For no intersection

$$-(1+k)(4+k) = (1+k)$$

and
 $-7(1+k) \neq 0$

Solve
$$-(1+k)(4+k) = (1+k)$$

 $-4-5k-k^2 = 1+k$
 $0 = k^2 + 6k + 5$
 $0 = (k+1)(k+5)$
 $k = -1, k = -5$,

And
$$k = -1$$

 $-7(1+k) \neq 0$ $-7(1+(-1)) = 0$
 $k = -5$
 $-7(1+(-5)) = 28 \neq 0$

Therefore k = -5