Infinite Solution - Finding Equation of a Line

Show that the following system of equations has infinite solutions and find the general solution of this system
$x+3 y-2 z=7$
$2 x-2 y+z=3$
$3 x+y-z=10$
(2) + (3)
$5 x-y=13$
2A(2)
$4 x-4 y+2 z=6$
©

$$
\begin{equation*}
x+3 y-2 z=7 \tag{1}
\end{equation*}
$$

(1). 0

$$
5 x-y=13
$$

Infinite solutions

Finding the Equation of the Line

Method

1. Eliminate z, write y in terms of x
2. Eliminate y, write z in terms of x
3. Write equation of line in parametric form
4. Eliminate z, write y in terms of x
...we have already done this

$$
y=5 x-13
$$

2. Eliminate y, write z in terms of x
(1) $\times 2$

$$
\begin{equation*}
2 x+6 y-4 z=14 \tag{1}
\end{equation*}
$$

(2) $\times 3$

$$
\begin{equation*}
6 x-6 y+3 z=9 \tag{B}
\end{equation*}
$$

(A) +

$$
\text { Bx } \begin{aligned}
-z & =23 \\
8 x-23 & =z
\end{aligned}
$$

3. Write equation of line in parametric form

$$
\begin{aligned}
& x=x \\
& y=5 x-13 \\
& z=8 x-23 \\
& x=\lambda \\
& y=5 \lambda-13 \\
& z=8 \lambda-23 \quad \text { Parametric form }
\end{aligned}
$$

Convert into other forms if necessary:

Vector form $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ -13 \\ -23\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right)$
Cartesian form

$$
\begin{aligned}
x & =\lambda \\
\frac{y+13}{5} & =\lambda \\
\frac{z+23}{8} & =\lambda
\end{aligned}
$$

