Intersection of Planes

There are three different types of solution:

Method - Our method for solving these systems is algebraic and uses elimination

1. There are three equations with three unknowns

$$
\begin{align*}
& x+3 y-2 z=7 \tag{1}\\
& 2 x-2 y+z=3 \tag{2}\\
& 3 x+y-z=12 \tag{3}
\end{align*}
$$

2. Take two of the equations and eliminate one of the unknowns (e.g. z)

$$
\text { (2)+(3) } 5 x-y=15(A)
$$

3. Take a different pair of equations and eliminate the same unknown (e.g. z)

$$
2 \times(2)+(1) 5 x-y=13(B)
$$

4. Attempt to solve equations A and B

You are left with 3 different situations depending on the number of solutions to the original system

$$
\begin{array}{lll}
5 x-y=9 & 5 x-y=15 & 5 x-y=13 \\
3 x+y=7 & 5 x-y=13 & 5 x-y=13
\end{array}
$$

We can solve these equations. We can't solve these equations, We can solve these they are inconsistent.

There are zero solutions equations, but...

There are infinite solutions
There is a unique solution.

Infinite Solutions

You are often asked to give the general solution to this. In which case you need to be able to find the equation of the straight line that the solutions usually lie on. See section on finding equation of a line in 3D.

Note, it is possible that the system represents three identical planes, but this would not come up in an exam.

Exam Questions

It is important to recognise each of the different situations above since exam questions often start with the idea that there are infinite of no solutions and you must work out the values of parameters:

Example

The system below has infinite solutions. Find \boldsymbol{k}.

$$
\begin{aligned}
& 2 x-y+z=0 \\
& 3 x+2 y-z=8 \\
& x+k y+3 z=-k^{2}+8
\end{aligned}
$$

Eliminating z gives

```
\(5 x+\quad y=8\)
\(10 x+(6+k) y=32-k^{2}\)
```

If there are infinite solutions, then these equations are equivalent

```
\(10 x+2 y=16\)
\(10 x+(6+k) y=32-k^{2}\)
```

Hence
$2=6+k$
$k=4$

