
a) Find $\overrightarrow{A C}$
b) Show that $\overrightarrow{B D}$ is perpendicular to $\overrightarrow{A C}$
c) Write down the equation of the line (AC) in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$.
d) Write down the equation of the line (BD)
e) The lines ($A C$) and ($B D$) intersect at E. Find the coordinates of E
a)

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \\
& =\binom{-10}{4}-\binom{6}{0} \\
& =\binom{-16}{4}
\end{aligned}
$$

b)

$$
\begin{aligned}
\overrightarrow{B D} & =\binom{1}{-3}-\binom{3}{5} \\
& =\binom{-2}{-8}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A C} \cdot \overrightarrow{B D} & =\binom{-16}{4} \cdot\binom{-2}{-8} \\
& =32-32 \\
& =0
\end{aligned}
$$

Since $\overrightarrow{A C} \cdot \overrightarrow{B D}=0$ Then $\overrightarrow{A C}$ is perpendicular to $\overrightarrow{B D}$
c)

$$
\text { (AC) } \boldsymbol{r}=\binom{6}{0}+s\binom{-16}{4}
$$

d)

$$
\text { (BD) } \boldsymbol{r}=\binom{3}{5}+t\binom{-2}{-8}
$$

e)

Find intersection of
$\boldsymbol{r}=\binom{6}{0}+s\binom{-16}{4}$
and
$\boldsymbol{r}=\binom{3}{5}+t\binom{-2}{-8}$

$$
\begin{aligned}
& 6-16 s=3-2 t \\
& 0+4 s=5-8 t \\
& -16 s+2 t=-3 \\
& \quad(4 s+8 t=5) \times 4 \\
& 16 s+32 t=20 \\
& -16 s+2 t=-3 \\
& 34 t=17 \\
& t=0.5
\end{aligned}
$$

Substitute $t=0.5 \mathrm{in}$
$\boldsymbol{r}=\binom{3}{5}+t\binom{-2}{-8}$

$$
\begin{aligned}
& \boldsymbol{r}=\binom{3}{5}+0.5\binom{-2}{-8} \\
& \boldsymbol{r}=\binom{3}{5}+\binom{-1}{-4} \\
& \boldsymbol{r}=\binom{2}{1} \\
& E(2,1)
\end{aligned}
$$

