The line L_{1} has equation $\boldsymbol{r}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+s\left(\begin{array}{c}-1 \\ -2 \\ k\end{array}\right)$.
The line L_{2} has equation $\boldsymbol{r}=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)+t\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)$.
a) The point $\mathrm{A}(3,1,-1)$ lies on the line L_{1}. Show that $k=4$
b) Show that the lines L_{1} and L_{2} are perpendicular.
c) Show that the lines L_{1} and L_{2} do not intersect.
d) The point B lies on the line L_{1}. The point C has coordinates $(2,1,-3)$. $A B C$ forms an isosceles triangles with $A C=B C$. Find the coordinates of B.
a)

A(3,1,-1) lies on L_{1}

$$
\begin{aligned}
& \left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
-2 \\
k
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \\
& \left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)+(-1)\left(\begin{array}{c}
-1 \\
-2 \\
k
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \\
& 3-k=-1 \\
& 4=k
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { Direction of } L_{1} & \left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right) \\
\text { Direction of } L_{2} & \left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right) \\
\text { Find scalar product } & \left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=-2+6-4 \\
& \text { Scalar product }=0 \\
& \text { Lines are perpendicular }
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { If lines intersect }\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right) \\
& 2-s=2+2 t \\
& -1-2 s=1-3 t
\end{aligned}
$$

$$
\begin{aligned}
& (-s-2 t=0) \times 2 \\
& -2 s+3 t=2 \\
& -2 s-4 t=0 \\
& 7 t=2 \\
& t=\frac{2}{7} \\
& -s-2\left(\frac{2}{7}\right)=0 \\
& s=-\frac{4}{7}
\end{aligned}
$$

$$
\boldsymbol{r}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)-\frac{4}{7}\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)=\left(\begin{array}{c}
\frac{18}{7} \\
\frac{1}{7} \\
\frac{5}{7}
\end{array}\right)
$$

$$
\boldsymbol{r}=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right)+\frac{2}{7}\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
\frac{18}{7} \\
\frac{1}{7} \\
-\frac{23}{7}
\end{array}\right)
$$

Since $\frac{5}{7} \neq-\frac{23}{7}$
The lines do not intersect.
d)

$$
\begin{aligned}
& |A C|=|B C| \\
& |A C|^{2}=(2-3)^{2}+(1-1)^{2}+(-3+1)^{2} \\
& |A C|^{2}=1+0+4 \\
& |A C|=\sqrt{5}
\end{aligned}
$$

$$
\boldsymbol{r}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)+s\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)
$$

$$
\begin{aligned}
& \overrightarrow{O B}=\left(\begin{array}{c}
2-s \\
-1-2 s \\
3+4 s
\end{array}\right) \\
& \overrightarrow{B C}=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right)-\left(\begin{array}{c}
2-s \\
-1-2 s \\
3+4 s
\end{array}\right)=\left(\begin{array}{c}
s \\
2+2 s \\
-6-4 s
\end{array}\right)
\end{aligned}
$$

$$
|A C|=|B C|
$$

$$
s^{2}+(2+2 s)^{2}+(-6-4 s)^{2}=5
$$

$$
s^{2}+4+8 s+4 s^{2}+36+48 s+16 s^{2}=5
$$

$$
21 s^{2}+56 s+35=0
$$

$$
3 s^{2}+8 s+5=0
$$

$$
(3 s+5)(s+1)=0
$$

$$
s=-\frac{5}{3}, s=-1
$$

When $s=-1 \overrightarrow{O B}=\left(\begin{array}{c}2+1 \\ -1+2 \\ 3-4\end{array}\right)=\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$, this is point A

$$
\begin{aligned}
& \text { When } s=-\frac{5}{3} \\
& \qquad \overrightarrow{O B}=\left(\begin{array}{c}
2+\frac{5}{3} \\
-1+\frac{10}{3} \\
3-\frac{20}{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{11}{3} \\
\frac{7}{3} \\
-\frac{11}{3}
\end{array}\right) \\
& B\left(\frac{11}{3}, \frac{7}{3},-\frac{11}{3}\right)
\end{aligned}
$$

