Intersection of 2 lines

Find the coordinates of the point of intersection of the following two lines

$$
\boldsymbol{r}_{\mathbf{1}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \quad \boldsymbol{r}_{2}=\left(\begin{array}{l}
5 \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

$$
\boldsymbol{r}_{\mathbf{1}}=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \quad \boldsymbol{r}_{\mathbf{2}}=\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{l}
5 \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

For two lines to intersect

$$
\begin{aligned}
& x_{1}=x_{2} \\
& y_{1}=y_{2} \\
& z_{1}=z_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1}=1+2 \lambda & x_{2}=5+\mu \\
y_{1}=0-3 \lambda & y_{2}=1+2 \mu \\
z_{1}=1+\lambda & z_{2}=0-\mu
\end{array}
$$

$$
\begin{aligned}
1+2 \lambda & =5+\mu \\
-3 \lambda & =1+2 \mu \\
1+\lambda & =0-\mu
\end{aligned}
$$

$$
\begin{aligned}
2 \lambda-\mu & =4 & & A \\
-3 \lambda-2 \mu & =1 & & B \\
\lambda+\mu & =-1 & & C
\end{aligned}
$$

$$
\begin{aligned}
2 \lambda-\mu & =4 & & A \\
\lambda+\mu & =-1 & & C
\end{aligned}
$$

$$
A+C \quad 3 \lambda=3
$$

$$
\lambda=1
$$

Sub in C $\quad 1+\mu=-1$

$$
\mu=-2
$$

Check that these values hold true for B

$$
-3 \lambda-2 \mu=-3-2(-2)=1
$$

Find coordinates of point of intersection

$$
\begin{array}{ll}
x_{1}=1+2 \lambda & x_{2}=5+\mu \\
y_{1}=0-3 \lambda & y_{2}=1+2 \mu \\
z_{1}=1+\lambda & z_{2}=0-\mu
\end{array}
$$

Hence the two lines intersect at $(3,-3,2)$

