
All distances in this question are in km.

An interceptor missile, M_1 is positioned at the origin. A missile, M_2 is launched from (-20,7) with velocity $\binom{3}{1}$ kms⁻¹. M_1 is capable of twice the speed of M_2 . How many seconds later must the interceptor missile, M_1 be launched if it is to travel the **shortest possible distance**?

The position of M_2 can be given by $r_2 = \begin{pmatrix} -20 \\ 7 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ where t is time in seconds after its launch

If M. is to travel shortest distance then its direction must be perpendicular to M.

Speed of M, = 2 x speed of M2

(0,0) Velocity of M, = (-2)

Note that $\begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 6 \end{pmatrix} = 0$

If Mi is launched a seconds after M_2 , position of M_2 can be given by $\Gamma_1 = (t-a)\begin{pmatrix} -2\\ 6 \end{pmatrix}, \quad t > a$

M, collides with M2

$$\begin{pmatrix} -20 \\ + \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} t-a \end{pmatrix} \begin{pmatrix} -2 \\ 6 \end{pmatrix}$$

Find a

Equate x positions: $-20+3t=-2(t-a) \Rightarrow -20+3t=-2t+2a \Rightarrow 5t-2a=20$

Equate y positions: $7+t=6(t-a) \Rightarrow 7+t=6t-6a \Rightarrow 5t-6a=7$

① -②
$$4a = 13$$

 $a = 3.25$ $\left(t = \frac{7}{5} + 6(3.15) = 5.3\right)$

M, should be lounched 3.25 seconds after Mz