The points A and B are given by $A(-8,1,-2)$ and $B(-2,-1,2)$.
A plane Π is defined by the equation $2 x-y-3 z=-8$.
a) Find a vector equation of the line L passing through the points A and B.
b) Find the coordinates of the point of intersection of the line and the plane.
a)

Find the direction of the line:

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\left(\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right)-\left(\begin{array}{c}
-8 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right)
\end{aligned}
$$

Equation of the line:
$\boldsymbol{r}=\left(\begin{array}{c}-8 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right)$
*there are other possible correct answers for this line
b)

Write line in parametric form

$$
\begin{aligned}
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-8 \\
1 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right) \\
& x=-8+6 \lambda \\
& y=1-2 \lambda \\
& z=-2+4 \lambda
\end{aligned}
$$

Substitute these values into
equation of the plane

$$
2(-8+6 \lambda)-(1-2 \lambda)-3(-2+4 \lambda)=-8
$$

Solve for λ

$$
-16+12 \lambda-1+2 \lambda+6-12 \lambda=-8
$$

$$
2 \lambda=3
$$

$$
\lambda=1.5
$$

Substitute in to equation of line

$$
\begin{aligned}
& x=-8+6(1.5)=1 \\
& y=1-2(1.5)=-2 \\
& z=-2+4(1.5)=4
\end{aligned}
$$

Point of intersection

