Consider the plane $x-2 y+4 z=-15$ and the line

$$
\begin{aligned}
& x=3+k \lambda \\
& y=-2+\lambda \\
& z=(2 k+6)-2 \lambda
\end{aligned}
$$

The line and the plane are perpendicular. Find
a) The value of k
b) The coordinates of the point of intersection of the line and the plane.
a)

$$
\begin{aligned}
\text { Normal to the plane } & =\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \\
\text { Direction of line } & =\left(\begin{array}{c}
k \\
1 \\
-2
\end{array}\right)
\end{aligned}
$$

If line and plane are perpendicular, then line is parallel to normal to the plane

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)=a\left(\begin{array}{c}
k \\
1 \\
-2
\end{array}\right) \\
& \left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)=-0.5\left(\begin{array}{c}
k \\
1 \\
-2
\end{array}\right) \\
& k=-0.5
\end{aligned}
$$

b)

Equation line $x=3-0.5 \lambda$

$$
\begin{aligned}
& y=-2+\lambda \\
& z=5-2 \lambda
\end{aligned}
$$

Substitute these values
into equation of the plane

$$
(3-0.5 \lambda)-2(-2+\lambda)+4(5-2 \lambda)=-15
$$

Solve for $\lambda 3-0.5 \lambda+4-2 \lambda+20-8 \lambda=-15$

$$
\begin{aligned}
& 42=10.5 \lambda \\
& \lambda=4
\end{aligned}
$$

Substitute in to equation of line

$$
\begin{aligned}
& x=3-0.5(4)=1 \\
& y=-2+(4)=2 \\
& z=5-2(4)=-3
\end{aligned}
$$

Point of intersection ($1,2,-3$)

