Π_{1} and Π_{2} are planes such that
$\Pi_{1}: 2 x-y-2 z=0$
and

$$
\Pi_{2}:-2 x+3 y+3 z=4
$$

L is the intersection of planes Π_{1} and Π_{2}
a) Find the equation of the line L

A third plane Π_{3} is defined by the equation $k x+(k-1) y-z=5$
b) Find the value of k such that the line L does not intersect with Π_{3}
a)

$$
\begin{array}{r}
2 x-y-2 z=0 \text { А } \\
-2 x+3 y+3 z=4
\end{array}
$$

Eliminate x
A+B

$$
2 y+z=4
$$

Write y in terms of z

$$
y=-0.5 z+2
$$

Eliminate y

$$
3 A+B \quad 4 x-3 z=4
$$

Write x in terms of $z \quad x=0.75 z+1$

So our equations become

$$
\begin{aligned}
& x=0.75 z+1 \\
& y=-0.5 z+2 \\
& z=z
\end{aligned}
$$

$$
\text { Let } z=\lambda
$$

$$
x=0.75 \lambda+1
$$

$$
y=-0.5 \lambda+2
$$

$$
z=\lambda
$$

Write in vector form

$$
\begin{aligned}
& \qquad \boldsymbol{r}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
0.75 \\
-0.5 \\
1
\end{array}\right) \\
& \text { Or with integer values } \\
& \boldsymbol{r}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right)
\end{aligned}
$$

b)

$$
L: \boldsymbol{r}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right)
$$

$\Pi_{3}: k x+(k-1) y-z=5$
If the line L does not intersect with Π_{3} Then they must be parallel

The normal to the plane Π_{3} is perpendicular to L

$$
\begin{aligned}
\begin{aligned}
\text { normal } & =\left(\begin{array}{c}
k \\
k-1 \\
-1
\end{array}\right) \\
\text { Direction of line } & =\left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right) \\
\text { Scalar product }=0 & \left(\begin{array}{c}
3 \\
-2 \\
4
\end{array}\right) \cdot\left(\begin{array}{c}
k \\
k-1 \\
-1
\end{array}\right)=0 \\
& 3 k-2 k+2-4=0 \\
& k=2
\end{aligned}
\end{aligned}
$$

Here is a graph representing the situation

