Π_1 and Π_2 are planes such that

$$\Pi_1: 2x - y - 2z = 0$$
and

$$\Pi_2: -2x + 3y + 3z = 4$$

L is the intersection of planes Π_1 and Π_2

a) Find the equation of the line L

A third plane Π_3 is defined by the equation kx + (k-1)y - z = 5

b) Find the value of k such that the line $\,L$ does not intersect with Π_3

a)

$$2x - y - 2z = 0$$
 A
 $-2x + 3y + 3z = 4$ B

Eliminate *x*

$$A+B 2y+z=4$$

Write
$$y$$
 in terms of z $y = -0.5z + 2$

Eliminate *y*

3A+B
$$4x - 3z = 4$$

Write
$$x$$
 in terms of z $x = 0.75z + 1$

So our equations become

$$x = 0.75z + 1$$

$$y = -0.5z + 2$$

$$z = z$$
Let $z = \lambda$

$$x = 0.75\lambda + 1$$

$$y = -0.5\lambda + 2$$

$$z = \lambda$$

Write in vector form

$$r = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0.75 \\ -0.5 \\ 1 \end{pmatrix}$$

Or with integer values

$$\boldsymbol{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$

$$L: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$

$$\Pi_3$$
: $kx + (k-1)y - z = 5$

If the line $\,L$ does not intersect with $\,\Pi_3$ Then they must be parallel

The normal to the plane Π_3 is perpendicular to L

normal
$$= \begin{pmatrix} k \\ k-1 \\ -1 \end{pmatrix}$$
 Direction of line
$$= \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$
 Scalar product = 0
$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} k \\ k-1 \\ -1 \end{pmatrix} = 0$$

$$3k-2k+2-4=0$$

$$k=2$$

Here is a graph representing the situation

