The point $A(3,1,-2)$ is on the line L, which is perpendicular to the plane $2 x-3 y-z+9=0$.
a. Find the Cartesian equation of the line L.
b. Find the point R which is the intersection of the line L and the plane.
c. The point A is reflected in the plane. Find the coordinates of the image of A.

It helps if we can visualise this situation.
R is the midpoint of A and A^{\prime}

If L is perpendicular to the plane then is parallel to the normal
a)

$$
\text { normal } \boldsymbol{n}=\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)
$$

A $(3,1,-2)$ is on the line L
Equation of the line L

$$
\begin{aligned}
& \boldsymbol{r}=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right) \\
& x=3+2 \lambda \\
& y=1-3 \lambda \\
& z=-2-\lambda
\end{aligned}
$$

$$
\text { Cartesian Form } \frac{x-3}{2}=\frac{y-1}{-3}=\frac{z+2}{-1}
$$

b)

Find the intersection with line $2 x-3 y-z+9=0$
and plane

$$
2(3+2 \lambda)-3(1-3 \lambda)-(-2-\lambda)+9=0
$$

Solve for λ

$$
\begin{aligned}
& 6+4 \lambda-3+9 \lambda+2+\lambda+9=0 \\
& 14 \lambda=-14 \\
& \lambda=-1
\end{aligned}
$$

Substitute in to equation of line

$$
\begin{aligned}
& x=3+2(-1)=1 \\
& y=1-3(-1)=4 \\
& z=-2-(-1)=-1 \\
& \boldsymbol{R}(\mathbf{1}, \mathbf{4},-\mathbf{1})
\end{aligned}
$$

c)

The points A, R and A^{\prime} lie on the straight line. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)$

$$
\begin{array}{r}
\lambda=0 \text { gives } \mathrm{A} \\
\lambda=-1 \text { gives } \mathrm{R}
\end{array}
$$

Therefore

$$
\left.\lambda=-2 \text { gives } A^{\prime}\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+O\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)\left(\begin{array}{c}
3 \\
1 \\
1 \\
-2
\end{array}\right)+(-1)\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)\right)\left(\begin{array}{l}
3 \\
(3,1,-2)
\end{array}\binom{3}{-2}+(-2)\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)\right.
$$

$$
\begin{aligned}
& A\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+0\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right) \\
& R\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+(-1)\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right) \\
& A^{\prime}\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+(-2)\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
7 \\
0
\end{array}\right) \\
& \quad \boldsymbol{A}^{\prime}(-\mathbf{1}, \mathbf{7}, \mathbf{0})
\end{aligned}
$$

