

The point $A(1,3,0)$ is on the line L, which is perpendicular to the plane $3 x-3 y+2 z=5$.
a. Find the equation of the line L.
b. Find the point R which is the intersection of the line L and the plane.
c. The point A is reflected in the plane. Find the coordinates of the image of A.
a)

$$
\text { normal } \boldsymbol{n}=\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)
$$

A $(1,3,0)$ is on the line L

$$
\begin{aligned}
& \text { Equation of the line } L \\
& \qquad r=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)
\end{aligned}
$$

b)

Parametric Equation of line

$$
\begin{aligned}
& x=1+3 \lambda \\
& y=3-3 \lambda \\
& z=2 \lambda
\end{aligned}
$$

Intersection with line and plane $3 x-3 y+2 z=5$

$$
3(1+3 \lambda)-3(3-3 \lambda)+2(2 \lambda)=5
$$

Solve for λ

$$
\begin{aligned}
& 3+9 \lambda-9+9 \lambda+4 \lambda=5 \\
& 22 \lambda=11 \\
& \lambda=0.5
\end{aligned}
$$

Substitute into equation of line

$$
x=1+3(0.5)
$$

$$
\begin{aligned}
& y=3-3(0.5) \\
& z=2(0.5) \\
& \boldsymbol{R}(\mathbf{2 . 5}, \mathbf{1} .5, \mathbf{1})
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { The points } \mathrm{A}, \mathrm{R} \text { and } \mathrm{A}^{\prime}\left(\begin{array}{l}
x \\
\text { lie on the straight line } \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+(0)\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right) \\
& \left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+(0.5)\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{l}
2.5 \\
1.5 \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)+(1)\left(\begin{array}{c}
3 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

$$
A^{\prime}(4,0,2)
$$

