Equation of Lines

The equation of a line in vector form is very useful

$$
\boldsymbol{r}=\overrightarrow{O A}+\lambda b
$$

A is a point on the line

The line is parallel to b

2 dimensions

$$
\boldsymbol{r}=\binom{1}{6}+\lambda\binom{1}{-2}
$$

(1,6) is a point on the line	The line is
parallel to $\binom{1}{-2}$	

3 dimensions
$\boldsymbol{r}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right)$
$(1,-2,3)$ is a point on the line

The line is parallel
to $\left(\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right)$

It is important that you understand all the different forms and convert quickly between them

$\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$	Vector Form	
$x=1+2 \lambda$	The line contains the point $(1,2,0)$	
$y=2+1 \lambda$	Parametric Form $z=0-1 \lambda$	The line is parallel to $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
$\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-0}{-1}$	Cartesian Form	

