Vector, Parametric and Cartesian Form of Straight Line

Convert the following vector equation of a line into parametric and Cartesian form

$$
\boldsymbol{r}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right)
$$

Vector Form

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right)
$$

$$
\begin{aligned}
& x=1-1 \lambda \\
& y=-2+3 \lambda \\
& z=3+4 \lambda
\end{aligned}
$$

Rearrange the equations to make λ the subject

$$
\begin{aligned}
x & =1-1 \lambda & y & =-2+3 \lambda \\
x-1 & =-1 \lambda & y \lambda & =3+4 \lambda \\
\frac{y-1}{-1} & =\lambda & \frac{y+2}{3} & =\lambda
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x-1}{-1}=\frac{y+2}{3}=\frac{z-3}{4} \\
& x=1-1 \lambda \\
& y=-2+3 \lambda \\
& z=3+4 \lambda
\end{aligned}
$$

Cartesian Form

Parametric Form

$$
\boldsymbol{r}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right)
$$

