Velocity Vectors

The position, in metres, of a submarine is given by

$$
\boldsymbol{r}=\binom{0}{5}+t\binom{4}{-3}
$$

where t is given in seconds

$$
\begin{aligned}
& \boldsymbol{r}=\binom{0}{5}+t\binom{4}{-3} \\
& \text { When } \mathrm{t}=0, \quad \boldsymbol{r}=\binom{0}{5}+0\binom{4}{-3}=\binom{0}{5} \\
& \text { When } \mathrm{t}=1, \quad \boldsymbol{r}=\binom{0}{5}+1\binom{4}{-3}=\binom{4}{2} \\
& \text { When } \mathrm{t}=2, \quad \boldsymbol{r}=\binom{0}{5}+2\binom{4}{-3}=\binom{8}{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{r}=\binom{0}{5}+t\binom{4}{-3} \\
& \text { Velocity }=\binom{4}{-3} \mathrm{~ms}^{-1} \\
& \begin{array}{c}
\text { Speed }=\sqrt{4^{2}+(-3)^{2}} \\
=5 \mathrm{~ms}^{-1}
\end{array}
\end{aligned}
$$

Example

A submarine is initially positioned at $(0,5)$ travels with velocity $\binom{4}{-3} \mathrm{~ms}^{-1}$.
One second later a torpedo is fired from $(3,0)$ with velocity $\binom{5}{1} \mathrm{~ms}^{-1}$.
Does the torpedo manage to shoot the submarine?

Submarine: $\boldsymbol{r}_{\boldsymbol{s}}=\binom{0}{5}+t\binom{4}{-3}$

Torpedo: $\boldsymbol{r}_{\boldsymbol{t}}=\binom{3}{0}+(t-1)\binom{5}{1}, t>1$

The directions are not parallel $\binom{4}{-3} \neq k\binom{5}{1}$
This means that their paths cross.
For a collision to take place, they need to have the same position at the same time

$$
\begin{array}{ll}
\binom{x_{s}}{y_{s}}=\binom{0}{5}+t\binom{4}{-3} & \begin{array}{l}
x_{s}=0+4 t \\
y_{s}=5-3 t
\end{array} \\
\binom{x_{t}}{y_{t}}=\binom{3}{0}+(t-1)\binom{5}{1} & \begin{array}{l}
x_{t}=3+5(t-1) \\
y_{t}=0+1(t-1)
\end{array}
\end{array}
$$

Find the time when the \times positions are equal

$$
\begin{aligned}
0+4 t & =3+5(t-1) \\
4 t & =3+5 t-5 \\
4 t & =-2+5 t \\
2 & =t
\end{aligned}
$$

Find the y positions at this time

$$
\begin{aligned}
& y_{s}=5-3 \times 2=-1 \\
& y_{t}=0+1(2-1)=2
\end{aligned}
$$

Since the y positions are not equal, they do not collide.

