Velocity Vectors

The position, in metres, of a submarine is given by

$$\boldsymbol{r} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

where t is given in seconds

$$r = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

When
$$t = 0$$
, $r = {0 \choose 5} + {0 \choose -3} = {0 \choose 5}$

When
$$t = 1$$
, $r = {0 \choose 5} + 1 {4 \choose -3} = {4 \choose 2}$

When
$$t = 2$$
, $r = {0 \choose 5} + 2 {4 \choose -3} = {8 \choose -1}$

$$r = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

Velocity =
$$\binom{4}{-3}$$
ms⁻¹

Speed =
$$\sqrt{4^2 + (-3)^2}$$

= 5 ms⁻¹

Example

A submarine is initially positioned at (0, 5) travels with velocity $\binom{4}{-3}$ ms⁻¹.

One second later a torpedo is fired from (3, 0) with velocity $\binom{5}{1}$ ms⁻¹.

Does the torpedo manage to shoot the submarine?

Submarine:
$$r_s = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

Torpedo:
$$r_t = \binom{3}{0} + (t-1)\binom{5}{1}$$
 , $t > 1$

The directions are not parallel $\begin{pmatrix} 4 \\ -3 \end{pmatrix} \neq k \begin{pmatrix} 5 \\ 1 \end{pmatrix}$

This means that their paths cross.

For a collision to take place, they need to have the same position at the same time

Find the time when the x positions are equal

$$0 + 4t = 3 + 5(t - 1)$$

$$4t = 3 + 5t - 5$$

$$4t = -2 + 5t$$

Find the y positions at this time

$$y_s = 5 - 3 \times 2 = -1$$

 $y_t = 0 + 1(2 - 1) = 2$

Since the y positions are not equal, they do not collide.