A Plane from 3 Points

Find the equation of the plane formed by the triangle $A(1,2,-1), B(2,-2,3)$ and $C(0,2,1)$
Does a 4 th point $D(1,-1,2)$ lie in the plane?

$$
\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n} \quad \text { Normal form }
$$

$$
A(1,2,-1), B(2,-2,3) \text { and } C(0,2,1)
$$

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \\
& =\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right)-\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
-4 \\
4
\end{array}\right)
\end{aligned}
$$

The vector product finds a vector perpendicular to 2 vectors

$$
\begin{aligned}
\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right) \times\left(\begin{array}{c}
1 \\
-4 \\
4
\end{array}\right) & =\left(\begin{array}{c}
0 \times 4-2 \times-4 \\
-(-1 \times 4-2 \times 1) \\
-1 \times-4-0 \times 1
\end{array}\right) \\
& =\left(\begin{array}{l}
8 \\
6 \\
4
\end{array}\right) \\
& =2\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) \quad \begin{array}{l}
\text { Check this is correct by finding the scalar products } \\
\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=0 \quad\left(\begin{array}{c}
4 \\
3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-4 \\
4
\end{array}\right)=0 \\
\text { As the scalar products are equal to zero, } \\
\text { the vector is perpendicular }
\end{array}
\end{aligned}
$$

Use the formula for the normal form

$$
\begin{aligned}
r \cdot \boldsymbol{n} & =\boldsymbol{a} \cdot \boldsymbol{n} \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) & =\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)
\end{aligned}
$$

Find the scalar products to find the cartesian form

$$
\begin{gathered}
x \cdot 4+y \cdot 3+z \cdot 2=1 \cdot 4+2 \cdot 3+(-1) \cdot 2 \\
4 x+3 y+2 z=8
\end{gathered}
$$

Does a $D(1,-1,2)$ lie in the plane?

$$
\begin{aligned}
4 x+3 y+2 z & =4 \cdot 1+3 \cdot(-1)+2 \cdot 2 \\
& =7 \\
& \neq 8
\end{aligned}
$$

