Angle between 2 planes

Find the acute angle between the planes $2 x+3 y-4 z=6$ and $x-y+2 z=2$
angle between two planes = angle between normals

There are two possible angles between 2 planes: an acute and an obtuse angle

$$
\begin{array}{ll}
2 x+3 y-4 z=6 & 1 x-1 y+2 z=2 \\
\text { Normal }=\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right) & \text { Normal }=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
\end{array}
$$

Find angle between two direction vectors $\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$

Angle between 2 vectors \mathbf{a} and \mathbf{b}

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)=2 \cdot 1+3 \cdot(-1)+(-4) \cdot 2 \\
& =-9
\end{aligned} \begin{aligned}
&\left|\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)\right|=\sqrt{2^{2}+3^{2}+(-4)^{2}}=\sqrt{29} \\
&\left|\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)\right|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{6} \\
& \boldsymbol{\operatorname { c o s } \theta}=\frac{-9}{\sqrt{29} \sqrt{6}} \\
& \boldsymbol{\theta} \approx \mathbf{1 3 3}
\end{aligned}
$$

Angle between planes $\approx 47^{\circ}$ or 133°

Acute angle between planes $\approx 47^{\circ}$

