Angle between a line and plane

Find the acute angle between the line and plane
$-x=\frac{y-5}{2}=2 z-8 \quad 3 x-y+z=8$

Angle between line and plane $=\alpha$
Angle between line and normal $=\theta$

$$
\alpha=90-\theta
$$

Find the direction of the line
$-x=\frac{y-5}{2}=2 z-8=\lambda$
Find normal to the plane
$3 x-1 y+1 z=8$

Write in parametric form
$-x=\lambda \quad \frac{y-5}{2}=\lambda \quad 2 z-8=\lambda$
$x=-\lambda \quad y=5+2 \lambda \quad z=4+\frac{1}{2} \lambda$

Write in vector form
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 5 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 0.5\end{array}\right)$

Direction of line $=\left(\begin{array}{c}-1 \\ 2 \\ 0.5\end{array}\right)$ which is parallel to $\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)$

Find angle between two direction vectors
$\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$

Angle between 2 vectors \mathbf{a} and \mathbf{b}
$\cos \theta=\frac{a \cdot b}{|a||b|}$
$\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)=(-2) \cdot 3+4 \cdot(-1)+1 \cdot 1=-9$
$\left|\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)\right|=\sqrt{(-2)^{2}+4^{2}+1^{2}}=\sqrt{21}$

$$
\left|\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right)\right|=\sqrt{3^{2}+(-1)^{2}+1^{2}}=\sqrt{11}
$$

$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{-9}{\sqrt{21} \sqrt{11}}$
$\theta \approx 126^{\circ}$ or $180^{\circ}-126^{\circ} \approx 54^{\circ}$
Acute angle between normal and line $\approx \mathbf{5 4}^{\circ}$

Acute angle between plane and line $\approx \mathbf{9 0}-54^{\circ}$

$$
\approx 36^{\circ}
$$

