The coordinates of points A, B and C are given as $(5,4,1),(5,1,-2)$ and $(1,-1,2)$ respectively.
a) Find the equation of the plane that passes through A, B and C
b) Find the equation of the plane that is perpendicular to $A B$ and passes through C
a) $\overrightarrow{O A}=\left(\begin{array}{l}5 \\ 4 \\ 1\end{array}\right) \quad \overrightarrow{O B}=\left(\begin{array}{l}5 \\ 1 \\ -2\end{array}\right) \quad \overrightarrow{O C}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$

$$
\left.\begin{array}{rl}
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \quad \overrightarrow{A C} & =\overrightarrow{O C}-\overrightarrow{O A} \\
=\left(\begin{array}{c}
0 \\
-3 \\
-3
\end{array}\right) \\
& =\left(\begin{array}{c}
-4 \\
-5 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
-18 \\
12 \\
-12
\end{array}\right) \\
& =-6\left(\begin{array}{c}
3 \\
-2 \\
-3 \\
-3
\end{array}\right) \times\left(\begin{array}{c}
-4 \\
-5 \\
1
\end{array}\right)
\end{array}\right)=\left(\begin{array}{cc}
-3 \cdot 1 & -(-3) \cdot(-3) \\
-(0 \cdot 11-(-3) \cdot(-4) \\
0 \cdot(-5)-(-3) \cdot(-4)
\end{array}\right) .
$$

b) $\overrightarrow{A B}=\left(\begin{array}{c}0 \\ -3 \\ -3\end{array}\right)=-3\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

$$
\begin{gathered}
r n=a \cdot n \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
y+z=1
\end{gathered}
$$

