Equation of Planes - Vector, Normal and Cartesian Form

There are 3 forms of the equation of a line, although the last two are pretty much the same

$$
\begin{array}{ll}
\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c} & \text { Vector form } \\
\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n} & \text { Normal form } \\
a x+b y+c z=d & \text { Cartesian form }
\end{array}
$$

$$
\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c} \quad \text { Vector form }
$$

$$
\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n} \quad \text { Normal form }
$$

$$
\begin{aligned}
& \overrightarrow{A R} \cdot n=0 \\
& (\overrightarrow{O R}-\overrightarrow{O A}) \cdot n=0 \\
& (r-a) \cdot n=0 \\
& r \cdot n-a \cdot n=0 \\
& r \cdot n=a \cdot n
\end{aligned}
$$

Example
Convert the following into normal and Cartesian form
$r=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$

The vector product finds a vector perpendicular to 2 vectors
$\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$
$\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \times-1-0 \times 1 \\ -(2 \times-1-3 \times 1) \\ 2 \times 0-3 \times 1\end{array}\right)$
Check this is correct by finding the scalar products

$$
=\left(\begin{array}{c}
-1 \\
5 \\
-3
\end{array}\right)
$$

$$
\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
-3
\end{array}\right)=0 \quad\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
-3
\end{array}\right)=0
$$

As the scalar products are equal to zero, the vector is perpendicular

Use the formula for the normal form

$$
\begin{aligned}
r \cdot n & =a \cdot n \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
-3
\end{array}\right) & =\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
5 \\
-3
\end{array}\right)
\end{aligned}
$$

Find the scalar products to find the cartesian form

$$
\begin{gathered}
x \cdot(-1)+y \cdot 5+z \cdot(-3)=1 \cdot(-1)+2 \cdot 5+0 \cdot(-3) \\
-x+5 y-3 z=-9
\end{gathered}
$$

