Equation of Planes

The equation of a plane can be given in several forms. It is important that you understand all the different forms

The vector and parametric form are almost identical

$\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$	Vector Form	$(1,2,0)$ is a point that lies in the plane $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$ are two direction vectors that lie in the plane
$x=1+2 \lambda+3 \mu$	Parametric Form	This is just the same as \mathbf{r} can be written $\left(\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right)$
$z=0+1 \lambda+(-1) \mu$		

To find the Normal form, we need a vector perpendicular to the plane (the normal) and a point in the plane.

We often use the vector product (the formula is given in the formula booklet) to find the normal.

Therefore, we can easily convert from vector form

$\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)=\left(\begin{array}{c}-1 \\ 5 \\ -3\end{array}\right)=$ normal vector to the plane

$\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n}$		Vector $\overrightarrow{A R}$ is perpendicular to \mathbf{n}
$\left(\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{1} \\ \mathbf{5} \\ -\mathbf{3}\end{array}\right)=\left(\begin{array}{c}\mathbf{1} \\ \mathbf{2} \\ \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{1} \\ \mathbf{5} \\ -\mathbf{3}\end{array}\right)$	Normal Form	$\boldsymbol{r}-\boldsymbol{a}) \cdot \boldsymbol{n}=\mathbf{0}$ $-x+5 y-3 z=-9$
Cartesian Form	Just work out the scalar products	

You should notice that the normal and Cartesian forms are almost identical.

