The area of a parallelogram formed by two adjacent vectors \boldsymbol{a} and \boldsymbol{b} is 7 square units.

$$
a=\left(\begin{array}{c}
-3 \\
4 \\
k
\end{array}\right) \boldsymbol{b}=\left(\begin{array}{c}
3 \\
-2 \\
-2
\end{array}\right)
$$

Find k

$$
\begin{aligned}
\underline{a} \times \underline{b} & =\left(\begin{array}{c}
-3 \\
4 \\
k
\end{array}\right) \times\left(\begin{array}{c}
3 \\
-2 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{c}
4 \times(-2)-(-2) k \\
-((-3) \times(-2)-3 k) \\
(-3) \times(-2)-12
\end{array}\right) \\
& =\left(\begin{array}{c}
-8+2 k \\
3 k-6 \\
-6
\end{array}\right)
\end{aligned}
$$

Area of parallelogram $=|\boldsymbol{v} \times \boldsymbol{w}|$
$\mathbf{v} \times \mathbf{w}=\left(\begin{array}{c}\mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3}\end{array}\right) \times\left(\begin{array}{c}\mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{3}\end{array}\right)=\left(\begin{array}{c}\mathbf{v}_{2} \mathbf{w}_{3}-\mathbf{v}_{3} \mathbf{w}_{2} \\ \mathbf{v}_{3} \mathbf{w}_{1}-\mathbf{v}_{1} \mathbf{w}_{3} \\ \mathbf{v}_{1} \mathbf{w}_{2}-\mathbf{v}_{2} \mathbf{w}_{1}\end{array}\right)$

Check $\underline{a} \times \underline{b}$ is perpendicular to a and \underline{b}

$$
\begin{aligned}
& \left(\begin{array}{c}
-3 \\
4 \\
k
\end{array}\right) \cdot\left(\begin{array}{c}
-8+2 k \\
3 k-6 \\
-6
\end{array}\right)=24-6 k+12 k-24-6 k=0 \\
& \left(\begin{array}{c}
3 \\
-2 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
-8+2 k \\
3 k-6 \\
-6
\end{array}\right)=-24+6 k-6 k+12+12=0
\end{aligned}
$$

area of parallelogram $=|\underline{a} \times \underline{b}|$

$$
\begin{aligned}
& =\sqrt{(-8+2 k)^{2}+(3 k-6)^{2}+(-6)^{2}} \\
& =\sqrt{64-32 k+4 k^{2}+9 k^{2}-36 k+36+36} \\
& =\sqrt{13 k^{2}-68 k+136}
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{13 k^{2}-68 k+136} & =7 \\
13 k^{2}-68 k+136 & =49 \\
13 k^{2}-68 k+87 & =0 \\
k \approx 2.23, \quad k & =3
\end{aligned}
$$

