\mathbf{a} and \mathbf{b} are vectors.
Show that $|\boldsymbol{a} \times \boldsymbol{b}|^{2}+|\boldsymbol{a} \cdot \boldsymbol{b}|^{2}=(\boldsymbol{a} \boldsymbol{b})^{2}$

$$
\begin{aligned}
|\boldsymbol{a} \times \boldsymbol{b}| & =\boldsymbol{a} \boldsymbol{b} \sin \theta \\
& =(\boldsymbol{a} \boldsymbol{b} \sin \theta)^{2} \\
|\boldsymbol{a} \times \boldsymbol{b}|^{2} & \\
|\boldsymbol{a} \times \boldsymbol{b}|^{2} & =(\boldsymbol{a} \boldsymbol{b})^{2} \sin ^{2} \theta \\
|\boldsymbol{a} \cdot \boldsymbol{b}| & =\boldsymbol{a} \boldsymbol{b} \cos \theta \\
|\boldsymbol{a} \cdot \boldsymbol{b}|^{2} & =(\boldsymbol{a} \boldsymbol{b} \cos \theta)^{2} \\
|\boldsymbol{a} \cdot \boldsymbol{b}|^{2} & =(\boldsymbol{a} \boldsymbol{b})^{2} \cos ^{2} \theta \\
|\boldsymbol{a} \times \boldsymbol{b}|^{2}+|\boldsymbol{a} \cdot \boldsymbol{b}|^{2} & =(\boldsymbol{a} \boldsymbol{b})^{2} \sin ^{2} \theta+(\boldsymbol{a} \boldsymbol{b})^{2} \cos ^{2} \theta \\
& =(\boldsymbol{a b})^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =(\boldsymbol{a b})^{2}
\end{aligned}
$$

