$$
\begin{aligned}
& \text { Prove that }|\mathbf{v} \times \mathbf{w}|^{2}=|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2} \\
& \text { Useful formula } \\
& |\boldsymbol{v} \times \boldsymbol{w}|=|\boldsymbol{v}||\boldsymbol{w}| \sin \theta \\
& v \cdot w=|v||\boldsymbol{w}| \cos \theta \\
& v \cdot w=|v||\boldsymbol{w}| \cos \theta \\
& |\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2}-(\boldsymbol{v} \cdot \boldsymbol{w})^{2}=|\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2}-(|\boldsymbol{v}||\boldsymbol{w}| \cos \theta)^{2} \\
& =|\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2}-|\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2} \cos ^{2} \theta \\
& =|v|^{2}|w|^{2}\left(1-\cos ^{2} \theta\right) \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& =|v|^{2}|w|^{2} \sin ^{2} \theta \\
& =(|\boldsymbol{v}||\boldsymbol{w}| \sin \theta)^{2} \\
& =|v \times w|^{2} \\
& |\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2}-(\boldsymbol{v} \cdot \boldsymbol{w})^{2}=|\boldsymbol{v} \times \boldsymbol{w}|^{2} \\
& |\boldsymbol{v}|^{2}|\boldsymbol{w}|^{2}-(\boldsymbol{v} \cdot \boldsymbol{w})^{2} \\
& |\boldsymbol{v} \times \boldsymbol{w}|=|\boldsymbol{v}||\boldsymbol{w}| \sin \theta
\end{aligned}
$$

