Vector Product

$\boldsymbol{v} \times \boldsymbol{w}$ is a vector perpendicular to \boldsymbol{v} and \boldsymbol{w}

$$
\boldsymbol{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

$\boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \times\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)=\left(\begin{array}{l}v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1}\end{array}\right)=\left(\begin{array}{c}v_{2} w_{3}-v_{3} w_{2} \\ -\left(v_{1} w_{3}-v_{3} w_{1}\right) \\ v_{1} w_{2}-v_{2} w_{1}\end{array}\right)$

In textbooks you may see this written in another form using the discriminant of a 3by3 matrix $\boldsymbol{v} \times \boldsymbol{w}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$

You can find the direction of the vector product using the right-hand rule

Find a vector perpendicular to \boldsymbol{v} and \boldsymbol{w}
$\boldsymbol{v}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)$
$\boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \times\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)=\left(\begin{array}{c}v_{2} w_{3}-v_{3} w_{2} \\ -\left(v_{1} w_{3}-v_{3} w_{1}\right) \\ v_{1} w_{2}-v_{2} w_{1}\end{array}\right)$
$\boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \times\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)=\left(\begin{array}{c}2 \times 4-3 \times 0 \\ -(1 \times 4-3 \times(-1)) \\ 1 \times 0-2 \times(-1)\end{array}\right)=\left(\begin{array}{c}8 \\ -7 \\ 2\end{array}\right)$
Check that this is perpendicular to original vectors.
Scalar products should equal zero

$$
\begin{aligned}
& \left(\begin{array}{c}
8 \\
-7 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=8 \cdot 1+(-7) \cdot 2+2 \cdot 3=0 \\
& \left(\begin{array}{c}
8 \\
-7 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right)=8 \cdot(-1)+(-7) \cdot 0+2 \cdot 4=0
\end{aligned}
$$

A vector perpendicular to \boldsymbol{v} and \boldsymbol{w} is $\left(\begin{array}{c}8 \\ -7 \\ 2\end{array}\right)$

