Find the angle between the lines
$L_{1}: \frac{x-1}{-1}=-y=\frac{z+2}{\sqrt{3}}$
$L_{2}: \frac{x+2}{2}=\frac{2 y+1}{4}=z+1$

Angle between lines $=$ Angle between direction vectors parallel to the lines

We can work out the direction vectors from the equations of the lines
$\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+\lambda\left(\begin{array}{c}
l \\
m \\
n
\end{array}\right)
$$

Direction vector $=\left(\begin{array}{c}l \\ m \\ n\end{array}\right)$

Find the direction of the lines

$$
\begin{array}{crrr}
L_{1}: \frac{x-1}{-1} & =-y= & \frac{z+2}{\sqrt{3}}=\lambda \\
\frac{x-1}{-1}=\lambda & -y=\lambda & \frac{z+2}{\sqrt{3}}=\lambda \\
x-1=-\lambda & y=-\lambda & y=-\lambda & z+2=\sqrt{3} \lambda \\
x=1-\lambda & & z=-2+\sqrt{3} \lambda
\end{array}
$$

Write in vector form
$L_{1}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ -1 \\ \sqrt{3}\end{array}\right)$
Direction vector $=\left(\begin{array}{l}-1 \\ -1 \\ \sqrt{3}\end{array}\right)$
$L_{2}: \frac{x+2}{2}=\frac{2 y+1}{4}=z+1=\mu$

$$
\begin{aligned}
\frac{x+2}{2} & =\mu & \frac{2 y+1}{4} & =\mu \\
x+2 & =2 \mu & 2 y+1 & =4 \mu \\
x & =-2+2 \mu & 2 y & =-1+4 \mu \\
& y & =\frac{-1}{2}+2 \mu &
\end{aligned}
$$

Write in vector form
$L_{2}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 \\ -0.5 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$
Direction vector $=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$

Find angle between two direction vectors

$$
\left(\begin{array}{l}
-1 \\
-1 \\
\sqrt{3}
\end{array}\right) \text { and }\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)
$$

Angle between 2 vectors \mathbf{a} and \mathbf{b}

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
-1 \\
-1 \\
\sqrt{3}
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)=-1 \cdot 2+(-1) \cdot 2+\sqrt{3} \cdot 1=-4+\sqrt{3} \\
& \left|\left(\begin{array}{l}
-1 \\
-1 \\
\sqrt{3}
\end{array}\right)\right|=\sqrt{(-1)^{2}+(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{5}
\end{aligned}
$$

$$
\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{-4+\sqrt{3}}{3 \sqrt{5}}
$$

$$
\left|\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)\right|=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3
$$

$$
\theta \approx 110^{\circ} \text { or } \theta \approx 70^{\circ}
$$

