(51) 囲
$\overrightarrow{A B}$ and $\overrightarrow{A C}$ are two vectors such that $\overrightarrow{A B}=\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$
Find $B \hat{A} C$ to the nearest degree.

$$
\begin{aligned}
|\overrightarrow{A B}| & =\sqrt{3^{2}+(-1)^{2}+2^{2}} \\
& =\sqrt{14} \\
|\overrightarrow{A C}| & =\sqrt{2^{2}+0^{2}+1^{2}} \\
& =\sqrt{5}
\end{aligned}
$$

Angle between 2 vectors \boldsymbol{a} and \boldsymbol{b}

$$
\cos \theta=\frac{a \cdot b}{|a||b|}
$$

$$
\overrightarrow{A B} \cdot \overrightarrow{A C}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

$$
=\frac{8}{\sqrt{14} \sqrt{5}}
$$

$$
\begin{aligned}
& =3 \cdot 2+(-1) \cdot 0+2 \cdot 1 \\
& =6+0+2 \\
& =8
\end{aligned}
$$

$\cos \theta=\frac{8}{\sqrt{70}}$
$\theta \approx 17^{\circ}$

