Vectors and Angles

The scalar product is useful for considering angles between vectors. This formula for 3D is in the formula booklet

2 dimensions	$\boldsymbol{v}=\binom{v_{1}}{v_{2}} \quad \boldsymbol{w}=\binom{w_{1}}{w_{2}}$
v. $\boldsymbol{w}=\binom{v_{1}}{v_{2}} \cdot\binom{w_{1}}{w_{2}}=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}$	
dimensions	$\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$
	$\boldsymbol{v} \cdot \boldsymbol{w}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right) \cdot\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}+v_{3} \cdot w_{3}$

Properties of Scalar Product

$$
\begin{aligned}
& \boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v} \\
& \boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{u} \cdot \boldsymbol{w} \\
& (k \boldsymbol{v}) \cdot \boldsymbol{w}=k(\boldsymbol{v} \cdot \boldsymbol{w}) \\
& \boldsymbol{v} \cdot \boldsymbol{v}=|\boldsymbol{v}|^{2}
\end{aligned}
$$

Angle between 2 vectors \boldsymbol{v} and \boldsymbol{w}

$$
\cos \theta=\frac{v \cdot w}{|v||w|}
$$

$|\boldsymbol{v}|$ is the magnitude of the vector \boldsymbol{v} which we find using Pythagoras' Theorem

Useful Result

When 2 vectors are perpendicular

$$
v \cdot w=0
$$

$\left.\begin{array}{ll}\text { Angle between } 2 \text { Lines } \\ L_{1}: r=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ -1 \\ \sqrt{3}\end{array}\right) \\ \text { The angle between the two lines } L_{1} \text { and } L_{2} \text { is the } \\ -2 \\ -0.5 \\ -1\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$

