Vectors and Angles

The scalar product is useful for considering angles between vectors. This formula for 3D is in the formula booklet

2 dimensions	$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \qquad \boldsymbol{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$
	$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = v_1 \cdot w_1 + v_2 \cdot w_2$
3 dimensions	$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \qquad \boldsymbol{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$
	$\boldsymbol{v} \cdot \boldsymbol{w} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3$

Properties of Scalar Product

$$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$$

$$\boldsymbol{u} \cdot (\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \cdot \boldsymbol{w}$$

$$(k\boldsymbol{v}) \cdot \boldsymbol{w} = k(\boldsymbol{v} \cdot \boldsymbol{w})$$

$$\boldsymbol{v} \cdot \boldsymbol{v} = |\boldsymbol{v}|^2$$

Angle between 2 vectors **v** and **w**

$$cos\theta = \frac{v \cdot w}{|v||w|}$$

|v| is the magnitude of the vector v which we find using Pythagoras' Theorem

Useful Result

When 2 vectors are perpendicular

 $\boldsymbol{v}\cdot\boldsymbol{w}=0$

