Scalar Product and Angle between Vectors

In 2 dimensions

$\boldsymbol{v}=\binom{v_{1}}{v_{2}} \quad \boldsymbol{w}=\binom{w_{1}}{w_{2}}$
$\boldsymbol{v} \cdot \boldsymbol{w}=\binom{v_{1}}{v_{2}} \cdot\binom{w_{1}}{w_{2}}=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}$

In 3 dimensions

$$
\boldsymbol{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \quad \boldsymbol{w}=\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}+v_{3} \cdot w_{3}
$$

Angle between 2 vectors \boldsymbol{v} and \boldsymbol{w} $\cos \theta=\frac{v \cdot w}{|v||w|}$

Useful Result
When 2 vectors are perpendicular

$$
v \cdot w=0
$$

Find angle between two direction vectors $\left(\begin{array}{c}1 \\ 2 \\ \sqrt{3}\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
2 \\
\sqrt{3}
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right)=1 \cdot(-1)+2 \cdot 3+\sqrt{3} \cdot(-2)=5-2 \sqrt{3} \\
& \left|\left(\begin{array}{c}
1 \\
2 \\
\sqrt{3}
\end{array}\right)\right|=\sqrt{1^{2}+2^{2}+(\sqrt{3})^{2}}=\sqrt{8} \\
& \left|\left(\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right)\right|=\sqrt{(-1)^{2}+3^{2}+(-2)^{2}}=\sqrt{14}
\end{aligned}
$$

Angle between 2 vectors \boldsymbol{v} and \boldsymbol{w}

$$
\begin{aligned}
& \cos \theta=\frac{v \cdot w}{|v||w|} \\
& \cos \theta=\frac{5-2 \sqrt{3}}{\sqrt{8} \sqrt{14}}
\end{aligned}
$$

