

PAGE 1

* Percentage of hemoglobin that is transporting the maximum of four oxygen molecules.

PAGE 2

Teach Me

Cas Exchange

In the presence of increased carbon dioxide, at the same oxygen pressure you will now have a slightly lower hemoglobin saturation. This is because CO_2 causes hemoglobin to have a reduced affinity for O_2 .

Hemoglobin

PAGE 3

The Bohr Shift

The change in affinity of hemoglobin in the presence of carbon dioxide.

Tissues that are active (cell respiration) such as muscles, use lots of O_2 , and make lots of \dot{CO}_2 . They have a high demand for O_2 . High \dot{CO}_2 causes the hemoglobin to have a lower affinity for O_2 and therefor causes its release and diffusion into towards the cells that need it.

The opposite is true for areas with low CO_2 , such as the lungs. The affinity for O_2 is therefor higher in these areas (lung). This makes it easy for hemoglobin to attract oxygen from the lungs into the blood, so that it can be sent somewhere else in the body that needs the oxygen.

The molecular structure of hemoglobin in a fetus is slightly different compared to adult.

Adult

(j) hat's the purpose?

- Occurs at the placenta.
- Mother can breathe, the fetus cannot.
- Mother sends O_2 to baby and rids of baby's CO_2 .
- Because the baby's hemoglobin has GREATER AFFINITY, it can "steal" O_2 from the mother's hemoglobin (that has LOWER AFFINITY).
- This is important as the baby has higher oxygen need as it is ACTIVELY GROWING.
- Concentration gradient also plays a role.

Teach Me

tchme.org