

tchme.org

eizediny nietora

You can refer to the following table to know which amino acid each mRNA codon represents:

			SECOND BASE							_	
		,		U		C		A		G	
The genetic code is DEGENERATE: for each amino acid there may be more than one codon. The genetic code is also UNIVERSAL .	r		UUU	Phenylalanine	UCU	Serine UAU UAC UAA UAG	UAU	Tyrosine	UGU	Quataina	U
			UUC		UCC		UAC		UGC	Cysteine	
			UUA	Leucine	UCA		UAA	STOP	UGA	STOD	
			UUG		UCG		UAG		UGG	Tryptophan	
			CUU		CCU	0	CAU	Lliatidina	CGU		
			CUC	Louoino	CCC Decline	CAC	HISTIGINE	CGC	Aroinino		
	BASE		CUA		CCA	Proline	CAA	Glutamine	CGA	- Alginine	
			CUG		CCG		CAG		CGG		
	[]	1	AUU	Isoleucine A	ACU	Threonine A	AAU	Asparagine	AGU	Serine	
You do not need to	E	۸	AUC		ACC		AAC		AGC		C
memorise the whole table,		A	AUA		ACA		AAA	Lysine	AGA	Aroining	A
- for your reference only. But			AUG	Methionine	ACG		AAG		AGG	- gittine	
AUG (the start codon) and the stop codons.		6	GUU	- Valine	GCU	- Alanine -	GAU	- Aspartic acid - Glutamic Acid	GGU		U C
			GUC		6CC		GAC		GGC	Qluging	
			GUA		GCA		GAA		GGA	Gigoine	
			GUG		GCG		GAG		GGG		G

Test Yourself! Using the DNA sequence provided, fill in the corresponding mRNA and amino acid sequence.

DNA	TAC	TAT	CCA	GCC	ATC
(anti-sense strand)		T			
		l r	anscription		
mRNA					
		7	ranslation		
AMINO ACIDS					

Summary of Structures INVOLVED IN PROTEIN SYNTHESIS

STRUCTURE	Function			
mRNA	Carries the message from the DNA in the nucleus to the ribosomes in the cytoplasm			
tRNA	Functions in the cytoplasm to carry amino acids to the ribosomes			
rRNA	Combines with ribosomal proteins to construct the cytoplasmic ribosomes			
RNA polymerase	Enzyme that unwinds and unzips DNA for transcription. It also function in adding RNA nucleotides to form mRNA.			
Ribosome	Organelle where translation occurs. Use mRNA to synthesize a protein.			

ANSWERS: meres aug, eeu, eeu, eeu, use eeu, antimore and antimore arginine, suglacine, arginine, argini

3

PAGE

01.2

1.2 eizentinyz nietorą REMEMBER: Each cell contains all your DNA, but will only EXPRESS genes for proteins that it needs (so not all genes are expressed in all cells). For example; the gene which codes for hemoglobin (used to carry oxygen) will only be expressed in red blood cells. Gene Expression: the process by which the information encoded in a gene is used to direct the synthesis of a protein molecule. A DNA MUTATION can cause alterations in the mRNA sequence, therefore affecting the AMINO ACID SEQUENCE of a protein. Mutations occur when **PERMANENT** SICKLE-CELL NORMAL changes to DNA is made. DNA replication is NOT PERFECT NORMAL POINT MUTATION One base o TRANSCRIPTION the gene TRANSCRIPTION mRNA mRNA SICKLE-CELL TRANSLATION TRANSLATION BLOCKED! Protein (Hemoglobin) Protein (abnormal)

Using the example of SICKLE CELL DISEASE, a DNA mutation causes a different amino acid to be present in the HEMOGLOBIN PROTEIN (respossible for carrying oxygen), causing red blood cells to become sickle-shape instead of the normal biconcave structure – this abnormal shape causes the RBCs to be likely to block small vessels and are worst at carrying oxygen.

More detail about mutations and sickle-cell disease seen in section $\mathcal{P}\!1.3$

tchme.org