

Paper 3 Section A Data Response (6) with worked answers

Paracetamol, an over the counter pain-killer, can be synthesised from phenol in three separate steps.

HO
$$\longrightarrow$$
 HO \longrightarrow NaNO₃ HO \longrightarrow NO₂ + HO \longrightarrow NaNO₃ \longrightarrow 25% yield 36% yield

Step 1

HO
$$\longrightarrow$$
 NO₂ NaBH₄ HO \longrightarrow NH₂ Pd / 1 mol dm⁻³ NaOH \longrightarrow 74% yield

Step 2

Step 3

(a) (i) In Step 1 phenol is converted into a mixture of 4-nitrophenol and 2-nitrophenol. Identify the mechanism of this reaction by stating its name. [1]

Electrophilic substitution [1]

(Underlying chemistry concepts can be found in 20.1 Electrophilic substitution.)

(ii) The two products from Step 1 can easily be separated by a process known as steam distillation. Suggest why the boiling point of 2-nitrophenol (216 °C) is considerably lower than the boiling point of 4-nitrophenol (279 °C). [2]

The intermolecular forces responsible for the relatively high boiling points in both 2-nitrophenol and 4-nitrophenol are hydrogen bonding. [1]

The proximity of the $-NO_2$ group to the -OH group in 2-nitrophenol causes some internal hydrogen bonding so the force of attraction between the molecules is less than that between 4-nitrophenol molecules where no internal hydrogen bonding is possible. [1]

(Underlying chemistry concepts can be found in 4.4 Intermolecular forces.)

(b) (i) In Step 2 the 4-nitrophenol is converted into 4-aminophenol. Identify the type of chemical reaction that occurs in this step. [1]

Reduction. [1]

(Underlying chemistry concepts can be found in 20.1 Reduction reactions.)

(II) 4-aminophenol is soluble in aqueous solutions of strong acids.

Deduce the structural formula of the product formed when 4-aminophenol dissolves in dilute hydrochloric acid. [1]

 $HO-C_6H_4-NH_3^+$ (or $HO-C_6H_4-NH_3^+Cl^-$) [1]

(Underlying chemistry concepts can be found in 8.1, 8.2 & 8.4 – Acids and bases.)

(c) The structural formula of ethanoic anhydride is:

(i) Deduce the structural formula of the product, other than paracetamol, formed in Step 3. [1]

CH₃COOH [1]

(Underlying chemistry can be deduced by extending concepts in 10.2 Alcohols.)

(ii) Other than hydroxyl and phenyl, state the name of a functional group present in paracetamol. [1]

Carboxamide [1]

(Amide is not acceptable as this is the class of compound not the functional group)

(Underlying chemistry concepts can be found in 10.1 Fundamentals of organic chemistry.)

(iii) 10.00 g of phenol produced 2.47 g of paracetamol. Assuming the percentage yields of Steps 1 and 2 are as listed, calculate the percentage yield for Step 3. [3]

```
M_r(phenol, C<sub>6</sub>H<sub>6</sub>O) = (6 x 12.01) + (6 x 1.01) + 16.00 = 94.12
so amount of phenol in 10.00 g = 10.00 ÷ 94.12 = 1.062 x 10<sup>-1</sup> mol [1]
```

Amount of 4-nitrophenol formed = $(25 \div 100) \times 1.062 \times 10^{-1} = 2.656 \times 10^{-2} \text{ mol}$ Amount of 4-aminophenol formed = $(74 \div 100) \times 2.656 \times 10^{-2} = 1.965 \times 10^{-2} \text{ mol}$ $M_{r(paracetamol, C_8H_9NO_2)} = (8 \times 12.01) + (9 \times 1.01) + 14.00 + (2 \times 16.00) = 151.17$ Amount of paracetamol formed = $2.47 \div 151.17 = 1.634 \times 10^{-2} \text{ mol}$ [1]

Since 1 mol of 4-aminophenol produces 1 mol of paracetamol Percentage yield = $((1.634 \times 10^{-2}) \div (1.965 \times 10^{-2})) \times 100 = 83.2\%$ [1]

(Underlying chemistry concepts can be found in 1.3 Reacting masses and volumes.)