SL HL Paper 3 Section A Experimental work (1) with worked
 answers

A student devised an experiment to determine the molar mass of an unknown gas \mathbf{X}.

Firstly, he filled a glass gas syringe (accurate to $\pm 0.5 \mathrm{~cm}^{3}$) with $100 \mathrm{~cm}^{3}$ of air then placed a rubber seal over the nozzle and weighed the syringe.
He then emptied the gas syringe, refilled it with $100 \mathrm{~cm}^{3}$ of the unknown gas \mathbf{X}, replaced the rubber seal and reweighed the syringe.
Finally, he measured the temperature of the room.

He obtained the following data:

Mass of syringe $+100 \mathrm{~cm}^{3}$ of air

Mass of syringe $+100 \mathrm{~cm}^{3}$ of unknown gas \mathbf{X}

Temperature
$186.293 \pm 0.001 \mathrm{~g}$
$186.358 \pm 0.001 \mathrm{~g}$
$20.0 \pm 0.5^{\circ} \mathrm{C}$

In order to calculate the mass of the unknown gas \mathbf{X} the student made the following assumptions:

The atmospheric pressure $=100 \mathrm{kPa}$
Air contains 80% nitrogen and 20% oxygen by volume so has a 'molar mass' equivalent to $28.8 \mathrm{~g} \mathrm{~mol}^{-1}$.

Due to Archimedes' Principle, a syringe containing $100 \mathrm{~cm}^{3}$ of air appears to have the same mass as a syringe containing $0 \mathrm{~cm}^{3}$ of air.
(a) Determine the mass of $100 \mathrm{~cm}^{3}$ of air at $20^{\circ} \mathrm{C}$. [2]

Either using $p V=n R T$
$n=$ Mass/28.8 [1]
Mass of $100 \mathrm{~cm}^{3}$ of air $=\left(28.8 \times 1.00 \times 10^{5} \times 100 \times 10^{-6}\right) \div(8.31 \times 293)=0.118 \mathrm{~g}$ [1]
or using 1 mole of any gas occupies $22.7 \mathrm{dm}^{3}$ at STP
1 mole occupies $22.7 \times(293 \div 273)=24.4 \mathrm{dm}^{3}$ at 293 K [1]
Mass of $100 \mathrm{~cm}^{3}$ of air $=(28.8 \times 100) \div(24.4 \times 1000)=0.118 \mathrm{~g}[1]$
(b) Determine the mass of $100 \mathrm{~cm}^{3}$ of X at $20^{\circ} \mathrm{C}$. [1]

Mass of $X=$ increase in mass + mass of $100 \mathrm{~cm}^{3}$ of air $=(186.358-186.293)+0.118=0.183 \mathrm{~g}$ [1]
www.thinkib.net/chemistry
(c) Show that the molar mass of \mathbf{X} is equal to $44.7 \mathrm{~g} \mathrm{~mol}^{-1}$ [1]
$M_{(\mathrm{x})}=(0.183 \div 0.118) \times 28.8=44.7 \mathrm{~g} \mathrm{~mol}^{-1}[1]$
Award the mark for arriving at correct value if $p V=n R T$ or molar volume of a gas expression used.
(d) The accepted value for the molar mass of \mathbf{X} is $44.0 \mathrm{~g} \mathrm{~mol}^{-1}$. Calculate the percentage error in the student's result. [1]

Experimental error $=((44.7-44.0) \div 44.0) \times 100=1.6 \%[1]$
(e) Identify, with a reason, the piece of equipment used that had the largest percentage uncertainty associated with the result. [1]

The balance.

The uncertainty of the temperature measured by the thermometer is $(0.5 \div 20.0) \times 100=2.5 \%$ The uncertainty in the volume of the $100 \mathrm{~cm}^{3}$ of gas measured twice is $(1.00 \div 100) \times 100=1.0 \%$ The uncertainty in the difference in mass between the two weighings of the syringe is $(0.002 \div 0.065) \mathrm{x}$ $100=3.1 \%$ [1]

