

HL Answers to Coloured complexes questions

- 1. Copper(I) contain a full 3d sub-level and scandium(III) contains no d electrons so no electronic transitions between split d levels are possible. Copper(II) contains nine d electrons and iron(III) five d electrons. In these compounds the 3d orbitals are split and the energy of the electron transitions between the split levels corresponds to the frequency of light in the visible region.
- **2. i.** In $[Fe(H_2O)_6]^{3+}$ the 3d sub-level is split into two by the water ligands. A d electron can absorb energy as it is promoted from the lower to the higher split level. The colour of the light transmitted is the complementary colour to the light absorbed.
 - ii. In $[Fe(CN)_6]^{3-}$ the cyanide ligands cause the amount of splitting to be different so a different wavelength of light is absorbed and the complementary colour transmitted is different to $[Fe(H_2O)_6]^{3+}$.
- **3.** i. Monodentate ligands are Lewis bases which use one non-bonded pair of electrons to form a dative (coordinate) covalent bond with a transition metal or transition metal ion.
 - ii. Thiocyanate ions cause the splitting of the d orbitals to be larger than the splitting by hydroxide ions, i.e. ΔE is greater for SCN⁻ than it is for OH⁻.
- **4.** i. (a) [Cu(H₂O)₆]²⁺: Red/orange (as the maximum absorption occurs between 600-800 nm).
 - **(b)** $[Cu(NH_3)_4(H_2O)_2]^{2+}$: Yellow/orange (as the maximum absorption occurs between 570-620 nm).
 - ii. (a) $[Cu(H_2O)_6]^{2+}$: Blue/green. (b) $[Cu(NH_3)_4(H_2O)_2]^{2+}$: Blue/purple.
 - iii. NH_3 is higher than H_2O as the maximum absorption occurs at lower wavelength (higher energy) so ΔE is greater.
 - iv. Both have the same octahedral shape and the same charge and the metal ion has the same oxidation state. However the metal itself is different (Fe²⁺ has 26 protons and Cu²⁺ has 29 protons) so the attraction for the energy levels to the nucleus will be different and the number of d electrons is also different (Fe²⁺ has six d electrons and Cu²⁺ has nine d electrons) so the amount the d orbitals are split will also be different.