SL \& HL Answers to Oxidation \& reduction (3) questions

1. (a) i. $\mathrm{Cu}(\mathrm{s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
ii. The oxidation state of copper increases from 0 to +2 so copper has been oxidised and the oxidation state of nitrogen decreases from +5 to +4 so nitrogen has been reduced.
(b) i. In Step 2 iodide ions have been oxidised from -1 to 0 so iodide ions are acting as the reducing agent.
ii. The oxidation state of copper has changed from +2 to +1 .
(c) Thiosulfate ions are acting as the reducing agent as they reduce elemental iodine (oxidation state zero) to iodide ions (oxidation state -1).
(d) Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}-(\mathrm{aq})$ in $21.4 \mathrm{~cm}^{3}=(21.4 \div 1000) \times 0.200=4.28 \times 10^{-3} \mathrm{~mol}$

Amount of I_{2} in $10.0 \mathrm{~cm}^{3}=2.14 \times 10^{-3} \mathrm{~mol}$
Amount of I_{2} in $100 \mathrm{~cm}^{3}=2.14 \times 10^{-2} \mathrm{~mol}$
Amount of copper reacted $=2 \times 2.14 \times 10^{-2}=4.28 \times 10^{-2} \mathrm{~mol}$
Mass of copper reacted $=63.55 \times 4.28 \times 10^{-2}=2.72 \mathrm{~g}$
(e) The percentage of copper in the coin $=(2.72 \div 3.03) \times 100=89.8 \%$
2. i. When the addition of one drop of the potassium manganate(VII) solution causes a faint pink colour to remain.
ii. Half-equations: $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{SO}_{4}^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}
$$

Overall equation: $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})$
iii. Amount of $\mathrm{MnO}_{4}^{-}(\mathrm{aq})=(12.0 \div 1000) \times 2.50 \times 10^{-2}=3.00 \times 10^{-4} \mathrm{~mol}$

Since $2 \mathrm{MnO}_{4}{ }^{-}$reacts with $5 \mathrm{SO}_{2}$
Amount of $\mathrm{SO}_{2}=5 / 2 \times 3.00 \times 10^{-4}=7.50 \times 10^{-4} \mathrm{~mol}$
Mass of sulfur $=32.07 \times 7.50 \times 10^{-4}=2.41 \times 10^{--} \mathrm{g}$
Percentage by mass of S in fuel $=\left(2.41 \times 10^{-2} \div 10.0\right) \times 100=0.24 \%$

