

HL Questions on First row d-block elements

- 1. The first row d-block elements comprise of scandium (electron configuration [Ar]4s²3d¹) through to zinc (electron configuration[Ar]4s²3d¹⁰). Explain why zinc is not considered to be a transition element.
- **2.** Explain why all first row transition elements show an oxidation state of +2 whereas only copper has compounds with an oxidation state of +1 and +2.
- 3. Explain why carbon monoxide, CO, is a good ligand, whereas methane cannot function as a ligand.
- **4.** The following statement is from the 'Applications and skills' section of the syllabus: "Explain the ability of transition metals to form variable oxidation states by considering successive ionization energies."
- i. Examine this statement by comparing the first six ionization energies of aluminium and vanadium.

 First six successive ionization energies of aluminium and vanadium (in kJ mol⁻¹)

Element	1 st IE	2 nd IE	3 rd IE	4 th IE	5 th IE	6 th IE
Al	578	1820	2740	11600	14800	18400
V	651	1370	2870	4600	6280	12400

ii. Examine whether the statement is still valid for manganese which has the common oxidation states of +2, +3, +4, +6 and +7.

First eight successive ionization energies of manganese (in kJ mol⁻¹)

1 st IE	2 nd IE	3 rd IE	4 th IE	5 th IE	6 th IE	7 th IE	8 th IE
717	1510	3250	5190	7360	9750	11500	18800

- **5.** Explain why copper(I) and scandium(III) complex ions are diamagnetic whereas many of the complex ions of most transition metals are paramagnetic.
- **6.** Give the formula of the complex ion formed between:
 - i. iron(III) ions and six cyanide ions.
 - ii. copper(II) ions and four chloride ions.
 - iii. cobalt(III) ions and three 1,2-ethanediamine bidentate ligands.
 - iv. iron(III) and one thiocyanate ion and five water molecules.