

HL Questions on Acids & bases calculations

1. Calculate the pH of:

- i. 10.0 cm³ of 1.00 x 10⁻² mol dm⁻³ hydrochloric acid solution.
- ii. $100 \text{ cm}^3 \text{ of } 1.00 \times 10^{-2} \text{ mol dm}^{-3} \text{ hydrochloric acid solution.}$
- iii. 10.0 cm³ of 2.00 x 10⁻⁴ mol dm⁻³ nitric acid solution.
- iv. 10.0 cm^3 of $1.00 \times 10^{-2} \text{ mol dm}^{-3}$ sodium hydroxide solution.
- \mathbf{v} . 10.0 cm³ of 1.00 x 10⁻³ mol dm⁻³ sulfuric acid solution.
- vi. 20.0 cm³ of 1.00 x 10⁻³ mol dm⁻³ barium hydroxide solution, Ba(OH)₂(aq).

2. A solution has a pH of 3.60. Calculate:

- i. The hydrogen ion concentration.
- ii. The hydroxide ion concentration.
- **iii.** The pH if the solution is diluted ten times (assume it is a strong acid as the degree of dissociation increases with dilution for weak acids).
- **3.** State the equations for the reaction of **i.** ethanoic acid and **ii.** ammonia with water.

4. Calculate the pH of:

- i. 1.00×10^{-3} mol dm⁻³ ethanoic acid solution, CH₃COOH(aq). K_a (CH₃COOH) = 1.8×10^{-5} at 298 K.
- ii. $3.00 \times 10^{-2} \text{ mol dm}^{-3}$ ammonia solution, NH₃(aq). $K_b(\text{NH}_3) = 1.8 \times 10^{-5}$ at 298 K.
- 5. Use Section 21 of the IB Chemistry data booklet to calculate:
 - i. the pH of $4.00 \times 10^{-4} \text{ mol dm}^{-3}$ propanoic acid solution, $C_2H_5COOH(aq)$.
 - ii. the pH of 1.00 x 10^{-5} mol dm⁻³ ethylamine (ethanamine) solution, $C_2H_5NH_2(aq)$.
- **6.** Use Section 21 of the IB data booklet to put the following in order of decreasing acid strength: water, ethanoic acid, phenol, chloroethanoic acid, ethanol, propanoic acid, benzoic acid.
- **7.** The graph on the right shows how the ionic product of water changes with temperature. Use the graph to determine:
 - i. the value of K_w at 80 °C.
 - ii. the hydrogen ion concentration at 70 °C.
 - iii. the hydroxide concentration at 70 °C.
 - iv. the pH at 50 °C.
 - v. the pOH at 80 °C.

