

HL Questions on Entropy and spontaneity

- 1. Given that the standard entropy of gaseous water is 189 J K⁻¹ mol⁻¹ and the standard entropy of liquid water is 69.9 J K⁻¹ mol⁻¹ calculate the standard entropy change when one mol of gaseous water condenses to the liquid state, $H_2O(g) \rightarrow H_2O(I)$.
- **2. (a)** Predict the sign (positive or negative) for the entropy change for the reaction:

$$2NO_2(g) \rightarrow N_2O_4(g)$$

(b) Explain why the entropy change for the above reaction is considerably more than for the reaction:

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

3. Use the information below to calculate the entropy change of formation of copper(I) oxide.

Substance	Entropy / J K ⁻¹ mol ⁻¹
Cu(s)	33.3
O ₂ (g)	205
Cu₂O(s)	101

4. You are unlikely to use orange crystals of ammonium dichromate, (NH₄)₂Cr₂O₇(s), in a school laboratory as it is a highly toxic substance. It is also carcinogenic and can explode when heated.

When it thermally decomposes (see image on right) it is both oxidised and reduced according to the equation:

$$(NH_4)_2Cr_2O_7(s) \rightarrow Cr_2O_3(s) + N_2(g) + 4 H_2O(g)$$

(a) State what is being oxidized and what is being reduced.

Clearly the thermal decomposition of ammonium dichromate is very exothermic ($\Delta H \ominus = -1794 \text{ kJ mol}^{-1}$). What can you also deduce about the change in entropy?

Thermal decomposition of ammonium dichromate (image from Flickr)

(HL Questions on Entropy and spontaneity continued)

5. In a blast furnace limestone (calcium carbonate) is decomposed into calcium oxide and carbon dioxide according to the equation:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

- (a) The standard enthalpies of formation of CaCO₃(s), CaO(s) and CO₂(g) are − 1207 kJ mol⁻¹, − 635 kJ mol⁻¹ and − 394 kJ mol⁻¹ respectively.
 Calculate the standard enthalpy change, ΔH⊕, for the thermal decomposition of calcium carbonate.
- (b) The standard entropy values for CaCO₃(s), CaO(s) and CO₂(g) are 92.9 J K⁻¹ mol⁻¹, 40.0 J K⁻¹ mol⁻¹ and 214 J K⁻¹ mol⁻¹ respectively.
 Calculate the change in entropy, ΔS[⊕], for the thermal decomposition of calcium carbonate.
- (c) Calculate the change in free energy, $\Delta G \ominus$, for the thermal decomposition of calcium carbonate at 298 K.
- (d) State whether the thermal decomposition of calcium carbonate is spontaneous or non-spontaneous at 298K.
- **(e)** Explain why limestone cliffs are thermodynamically stable whereas limestone decomposes readily in a blast furnace.
- 6. Propene reacts with hydrogen at 180 °C in the presence of a nickel catalyst to give propane.

$$C_3H_6(g) + H_2(g) \rightarrow C_3H_8(g)$$

- (a) Use the information below to determine the value for the free enthalpy change for this reaction at 180 °C.
- **(b)** At 180 °C this reaction is spontaneous.

 Determine the temperature above which the reaction becomes non-spontaneous.

Substance	ΔH _f ^e / kJ mol ⁻¹	S ⁰ / J K ⁻¹ mol ⁻¹
H ₂ (g)	0	131
C₃H ₆ (g)	+ 20.4	267
C ₃ H ₈ (g)	- 104	270