

SL & HL Questions on Oxidation & reduction (1)

1. Give the oxidation state of sulfur in the reactants and products in the following reactions and in each case state whether it has been oxidized or reduced:

i.
$$H_2S(g) + Cl_2(g) \rightarrow 2HCl(g) + S(s)$$

ii.
$$Zn(s) + H_2SO_4(aq) \rightarrow Zn^{2+}(aq) + SO_4^{2-}(aq) + H_2(g)$$

iii.
$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

iv.
$$3SO_3^{2-}(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3SO_4^{2-}(aq) + 2Cr^{3+}(aq) + 4H_2O(1)$$

2. Give the oxidation state of the transition metal in the following compounds:

i.
$$[Fe(H_2O)_6]^{2+}$$
,

iii.
$$[Cu(NH_3)_4(H_2O)_2]^{2+}$$

- 3. Explain the difference between the use of (III), 3+ and +3 when applied to Fe.
- **4.** State the name of the following compounds using the correct oxidation number:

$$\mathbf{v}$$
. MnO₂

- **5.** When magnesium metal is placed in an aqueous solution of iron(II) ions, Fe²⁺(aq), the magnesium dissolves and iron metal is precipitated. State the two half-equations and the overall redox equation for the reaction taking place.
- **6.** Bubbling sulfur dioxide gas, $SO_2(g)$ through an acidic solution of potassium manganate(VII), KMnO₄(aq), causes the colour of the solution to change from intense purple to colourless as the manganate(VII) ion, MnO_4^- is reduced to manganese(II) ions, $Mn^{2+}(aq)$. The two half-equations for the reactions taking place are:

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$$
 and

$$SO_3^{2-}(aq) + H_2O(I) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$$

- i. Identify the oxidizing agent present.
- ii. Deduce the overall equation for the redox reaction.
- **7.** Identify the oxidizing agent in each case and state the equation for the reaction that occurs when:
 - i. chlorine gas is bubbled through an aqueous solution of potassium bromide.
 - ii. bromine water is added to an aqueous solution of potassium iodide.
- 8. Identify the oxidizing agent and the reducing reagent in the following reactions:

i.
$$Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(l)$$

ii.
$$5H_2O_2(I) + 2MnO_4^- + 6H^+(aq) \rightarrow 2Mn^{2+}(aq) + 5O_2(g) + 8H_2O(I)$$

iii.
$$H_2O_2(I) + 2Fe^{2+}(aq) + 2H^+(aq) \rightarrow 2Fe^{3+}(aq) + 2H_2O(I)$$

9. Ethanol, CH₃CH₂OH, can be oxidized to ethanal, CH₃CHO, using an acidified solution of dichromate(VI) ions, Cr₂O₇²⁻(aq). During the process the orange solution turns green due to the formation of chromium(III) ions, Cr³⁺(aq). Deduce the two half-equations and the overall equation for the redox reaction that occurs.