## SL \& HL Questions on Reacting masses \& volumes

1. Zinc metal reacts with copper(II) sulfate solution according to the following equation:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

Determine the maximum mass of copper that can be deposited when 1.20 g of zinc is added to $50.0 \mathrm{~cm}^{3}$ of $2.00 \times 10^{-1} \mathrm{~mol} \mathrm{dm}^{-3} \operatorname{copper}(\mathrm{II})$ sulfate solution.
2. Calculate the mass of carbon dioxide produced when $150 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, is added to 10.0 g of calcium carbonate, $\mathrm{CaCO}_{3}$.
3. A student prepared ethene by dehydrating ethanol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

She started with 9.36 g of ethanol and made 2.12 g of ethene. Calculate the percentage yield she obtained for this reaction.
4. A sample of gas occupies $67.2 \mathrm{~cm}^{3}$ at a temperature of $22.0^{\circ} \mathrm{C}$ and a pressure of $9.38 \times 10^{4} \mathrm{~Pa}$. Calculate the volume the gas will occupy if the temperature is increased to $29.0^{\circ} \mathrm{C}$ and the pressure increased to $1.06 \times 10^{5} \mathrm{~Pa}$.
5. $2.50 \mathrm{dm}^{3}$ of gas at a temperature of $19.0^{\circ} \mathrm{C}$ and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$ has a mass of 4.59 g . Determine the molar mass of the gas.
6. The molecular formula of a gaseous hydrocarbon can be determined by combusting it completely in excess oxygen and then passing it through potassium hydroxide solution to absorb the carbon dioxide produced. In an experiment $200 \mathrm{~cm}^{3}$ of a hydrocarbon was reacted with $1500 \mathrm{~cm}^{3}$ of oxygen. After the hydrocarbon had combusted completely $1000 \mathrm{~cm}^{3}$ of gas remained. This volume was reduced to $200 \mathrm{~cm}^{3}$ after the gas had been passed through a solution of potassium hydroxide. (All volumes were measured under the same conditions of temperature and pressure.) Deduce the formula of the hydrocarbon.

