

SL & HL Questions on Shapes & Molecular polarity

- 1. Predict the shape and bond angles of:
 - i. boron trichloride, BCl₃

ii. phosphoryl chloride, POCl₃
iii. phosphine, PH₃
iv. hydrogen cyanide, HCN

- **2.** Explain why sulfur dioxide molecules, SO₂, have a bent shape whereas carbon dioxide molecules, CO₂, are linear.
- 3. Explain why C=O bonds are polar and yet the carbon dioxide molecule is non-polar.
- **4.** Explain why the H-N-H angle in ammonia is smaller than the H-N-H angle in the ammonium ion.
- 5. i. A simplified model of benzene, C₆H₆, shows the six carbon atoms in a ring with alternate single and double bonds between the carbon atoms. Each carbon atom is also bonded to one hydrogen atom. Based on this model predict the C-C-C bond angle in benzene.
 - **ii.** In cyclohexane, C₆H₁₂ the six carbon atoms are also in a ring but are joined to each other only by single bonds. Each carbon atom is also bonded to two hydrogen atoms. Predict the C-C-C bond angle in cyclohexane.
- **6.** Fluorine and oxygen are very electronegative elements. Explain why hydrogen fluoride, HF, and water, H₂O, are very polar molecules but tetrafluoromethane, CF₄, and carbon dioxide, CO₂ are non- polar.

HL only questions

7. Predict the shape of:

- i. xenon tetrafluoride, XeF₄
- ii. the iodine tetrachloride ion, ICl₄⁻
- iii. chlorine trifluoride, CIF₃
- 8. Predict all the F-P-F bond angles in:
 - i. phosphorus pentafluoride, PF₅
 - ii. the phosphorus hexafluoride ion, PF_6^-

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry