SL \& HL Questions on Shapes \& Molecular polarity

1. Predict the shape and bond angles of:
i. boron trichloride, BCl_{3}
ii. phosphoryl chloride, POCl_{3}
iii. phosphine, PH_{3}
iv. hydrogen cyanide, HCN
2. Explain why sulfur dioxide molecules, SO_{2}, have a bent shape whereas carbon dioxide molecules, CO_{2}, are linear.
3. Explain why $\mathrm{C}=\mathrm{O}$ bonds are polar and yet the carbon dioxide molecule is non-polar.
4. Explain why the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in ammonia is smaller than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in the ammonium ion.
5. i. A simplified model of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, shows the six carbon atoms in a ring with alternate single and double bonds between the carbon atoms. Each carbon atom is also bonded to one hydrogen atom. Based on this model predict the C-C-C bond angle in benzene.
ii. In cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}$ the six carbon atoms are also in a ring but are joined to each other only by single bonds. Each carbon atom is also bonded to two hydrogen atoms. Predict the C-C-C bond angle in cyclohexane.
6. Fluorine and oxygen are very electronegative elements. Explain why hydrogen fluoride, HF , and water, $\mathrm{H}_{2} \mathrm{O}$, are very polar molecules but tetrafluoromethane, CF_{4}, and carbon dioxide, CO_{2} are non- polar.

HL only questions

7. Predict the shape of:
i. xenon tetrafluoride, XeF_{4}
ii. the iodine tetrachloride ion, ICl_{4}^{-}
iii. chlorine trifluoride, ClF_{3}
8. Predict all the F-P-F bond angles in:
i. phosphorus pentafluoride, PF_{5}
ii. the phosphorus hexafluoride ion, $\mathrm{PF}_{6}{ }^{-}$
