

SL & HL Questions on Strong & weak acids & bases

- 1. i. Explain why 25.0 cm³ of 1.00 x 10⁻² mol dm⁻³ hydrochloric acid solution, HCl(aq), has a lower pH value than 25.0 cm³ of 1.00 x 10⁻² mol dm⁻³ ethanoic acid solution, CH₃COOH(aq).
 - **ii.** When an acid is neutralized by a base the ionic equation for the reaction taking place is: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

Explain why both of the above solutions react completely with exactly 25.0 cm³ of 1.00×10^{-2} mol dm⁻³ sodium hydroxide solution, NaOH(aq).

- **2.** The equilibrium constant for the dissociation of ammonia, NH_3 , in water is 1.8×10^{-5} .
 - i. Write the equation for the dissociation of ammonia in water.
 - ii. Write the equilibrium expression for the dissociation of ammonia in water.
 - **iii.** Describe how the electrical conductivity of an aqueous solution of ammonia differs to an aqueous solution of sodium hydroxide with the same concentration.
- **3.** The equilibrium constant for the dissociation of ethanoic acid, CH₃COOH, in water is 1.8×10^{-5} . The equilibrium constant for the dissociation of chloroethanoic acid, CH₂ClCOOH, in water is 1.4×10^{-3} .
 - i. Write the equation for the dissociation of ethanoic acid in water.
 - ii. Write the equilibrium expression for the dissociation of ethanoic acid in water.
 - iii. Deduce which of the two acids given above is weaker and explain your reasoning.
- **4.** The ethoxide ion, $C_2H_5O^-$, is a stronger base than the hydroxide ion, OH^- . Deduce how the equilibrium constant for the dissociation of ethanol will differ to the dissociation of water at the same temperature
- **5.** Sulfuric acid is often assumed to be a strong diprotic acid. In fact, the equilibrium constant for the dissociation of $H_2SO_4(aq)$ to form $HSO_4^-(aq)$ and $H^+(aq)$ is 2.4 x 10⁶ and the equilibrium constant for the dissociation of $HSO_4^-(aq)$ to form $SO_4^{2-}(aq)$ and $H^+(aq)$ is 1.0 x 10⁻².

Use this information to properly describe the strength of sulfuric acid.

- **6. i.** Distinguish between the words "concentrated", "corrosive" and "strong" when applied to an acid.
 - ii. Distinguish between the words "dilute" and "weak" when applied to an alkali.
 - **iii.** Explain why a dilute aqueous solution of a strong acid might be a better conductor of electricity than a concentrated aqueous solution of a weak acid.