## (SL [ $H$ Paper 3 Section A Data Response (5) with worked answers

The Royal Society of Chemistry has introduced a global experiment for school students to determine the amount of vitamin $C$ in various fruits.

Students first determine how many drops of a given iodine solution are required to react with a known amount of vitamin C by calibrating the iodine solution with a known amount of vitamin $C$ using starch as an indicator.
All the Vitamin C content is then extracted from a selected fruit and the number of drops of the standardised iodine solution required to react with the vitamin $C$ is determined. The amount of vitamin C in $\mathrm{mg} \mathrm{g}^{-1}$ in the selected fruit is then calculated.
The relevant equation for the reaction in aqueous solution is:


The molar mass of vitamin $\mathrm{C}=176.12 \mathrm{~g} \mathrm{~mol}^{-1}$
(a) (i) Deduce the two half-equations for the oxidation of vitamin $C$ and the reduction of iodine in aqueous solution. [2]

$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}[1]$
(Underlying chemistry concepts can be found in 9.1 Oxidation \& reduction.)
(ii) Explain why vitamin C is soluble in water. [1]

It contains polar -OH groups which can form hydrogen bonds with water molecules. [1]
(Underlying chemistry concepts can be found in 4.4 Intermolecular forces.)
www.thinkib.net/chemistry
(b) A student in a particular school obtained the following calibration curve:

She found that iodine solution

epper required 82 drops of the
(i) Deduce the concentration of vitamin C in $\mathrm{mg} \mathrm{g}^{-1}$ of the fresh red pepper. [2]
3.04 g required 82 drops so 1.00 g would require $82 \div 3.04=27$ drops [1]

Interpolation of the graph gives 0.65 mg of vitamin C , so the concentration in fresh red pepper is 0.65 $\mathrm{mg} \mathrm{g}^{-1}$ [1]
(Underlying chemistry concepts can be found in 11.2 Graphical techniques.)
(ii) It was determined that 103 drops of the iodine solution had a total volume of $1.00 \mathrm{~cm}^{3}$. Calculate the concentration of the iodine solution in $\mathrm{mol} \mathrm{dm}^{-3}$. [2]

27 drops of iodine solution reacts with 0.65 mg of vitamin C
$M($ vitamin $C)=176.12 \mathrm{~g} \mathrm{~mol}^{-1}$ so one drop reacts with $0.65 \div(1000 \times 176.12 \times 27)=1.37 \times 10^{-7} \mathrm{~mol}$ of vitamin C [1]
One mol of vitamin C reacts with one mol of iodine
Amount of iodine in one drop $=1.37 \times 10^{-7} \mathrm{~mol}$, and there are $103 \times 1000$ drops in one $\mathrm{dm}^{3}$
Concentration of iodine solution $=103 \times 1000 \times 1.37 \times 10^{-7}=0.014 \mathrm{~mol} \mathrm{dm}^{-3}$. [1]
(Underlying chemistry concepts can be found in 1.2 The mole \& Avogadro's constant.)
(c) lodine can be formed by the reaction between iodide and iodate ions in acidic solution:

$$
\mathrm{I}^{-}(\mathrm{aq})+\mathrm{IO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{I}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

This redox reaction is known as a disproportionation reaction as iodine is simultaneously oxidised (from -1 to zero) and reduced (from +5 to zero).
www.thinkib.net/chemistry
lodine is insoluble in water but it does dissolve in a solution of potassium iodide as it forms the complex triiodide ion, $\mathrm{I}_{3}{ }^{-}$.
$I_{2}(a q)+I^{-}(a q) \rightarrow I_{3}^{-}(a q)$

Discuss whether this reaction between iodine and iodide ions can also be considered to be a disproportionation reaction. [2]

Applying the rules for determining oxidation states gives an average oxidation state of $-1 / 3$ for iodine in the $I_{3}{ }^{-}$ion. Assuming this is the correct value then disproportionation has occurred as $I$ in $I_{2}$ has been reduced from zero to $-1 / 3$ and oxidised from -1 in the iodide ion to $-1 / 3$. [1] The rules do not take into account the fact that iodine is bonded to itself in the $\mathrm{I}_{3}{ }^{-}$ion and also assume falsely that the covalent bonds in a complex ion behave as if they are ionic. Some chemists regard the $\mathrm{I}_{3}{ }^{-}$ ion as being a mixture of iodine and iodide. If this is assumed then no redox reaction is occurring. [1]
(Underlying chemistry concepts can be found in 9.1 Oxidation \& reduction and The Nature of Science.)

