

SI III Paper 3 Section A Experimental work (1)

A student devised an experiment to determine the molar mass of an unknown gas X.

Firstly, he filled a glass gas syringe (accurate to ± 0.5 cm³) with 100 cm³ of air then placed a rubber seal over the nozzle and weighed the syringe.

He then emptied the gas syringe, refilled it with 100 cm³ of the unknown gas **X**, replaced the rubber seal and reweighed the syringe.

Finally, he measured the temperature of the room.

He obtained the following data:

Mass of syringe + 100 cm ³ of air	186.293 ± 0.001 g
Mass of syringe + 100 cm ³ of unknown gas X	186.358 ± 0.001 g
Temperature	20.0 ± 0.5 °C

In order to calculate the mass of the unknown gas **X** the student made the following assumptions:

The atmospheric pressure = 100 kPa Air contains 80% nitrogen and 20% oxygen by volume so has a 'molar mass' equivalent to 28.8 g mol⁻¹.

Due to Archimedes' Principle, a syringe containing 100 cm³ of air appears to have the same mass as a syringe containing 0 cm³ of air.

- (a) Determine the mass of 100 cm³ of air at 20 °C. [2]
- (b) Determine the mass of 100 cm³ of X at 20 °C. [1]
- (c) Show that the molar mass of X is equal to 44.7 g mol⁻¹ [1]
- (d) The accepted value for the molar mass of X is 44.0 g mol⁻¹. Calculate the percentage error in the student's result. [1]
- (e) Identify, with a reason, the piece of equipment used that had the largest percentage uncertainty associated with the result. [1]

© Dr. Geoffrey Neuss, InThinking https://www.thinkib.net/chemistry