## HL Answers to Activation energy questions

1. i. Since the units of the rate constant are $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ the overall order of the reaction must be two (i.e. second order).
ii. $\ln k=-E_{\mathrm{a}} / R T+\ln A$

At $700 \mathrm{~K}: \ln 1.30=-(133.8 \times 1000) /(8.314 \times 700)+\ln A$
Hence $\ln A=\ln 1.30+(133.8 \times 1000) /(8.314 \times 700)$
At $T, \ln 20.0=-(133.8 \times 1000) /(8.314 \times T)+\ln A$
$=-(133.8 \times 1000) /(8.314 \times T)+\ln 1.30+(133.8 \times 1000) /(8.314 \times 700)$
Hence $\ln 20.0-\ln 1.30=(133.8 \times 1000) /(8.314) \times(1 / 700-1 / T)$

$$
\begin{aligned}
& 2.7334=22.990-16093 / \mathrm{T} \\
& \mathrm{~T}=16093 / 20.257=794 \mathrm{~K}\left(521^{\circ} \mathrm{C}\right)
\end{aligned}
$$

2. i. Since the units of the rate constant are $\mathrm{s}^{-1}$ the overall order of the reaction must be one (i.e. first order).
ii. Rate $=k\left[\mathrm{H}_{3} \mathrm{CNC}\right]$
iii. The temperatures need to be converted into Kelvin then a graph of $\ln k$ against $1 / T$ must be plotted. The gradient is equal to $-E_{\mathrm{a}} / R$

| 1/Temperature $/ \mathrm{K}^{-1}$ | $\ln \boldsymbol{k}$ |
| :---: | :---: |
| $2.16 \times 10^{-3}$ | -10.59 |
| $2.12 \times 10^{-3}$ | -9.85 |
| $1.99 \times 10^{-3}$ | -7.37 |
| $1.91 \times 10^{-3}$ | -5.76 |



The gradient $=-4.2 / 0.00022=-19091=-E_{\mathrm{a}} / R$ $E_{\mathrm{a}}=19091 \times 8.314=159000 \mathrm{~J}=159 \mathbf{~ k J ~ m o l}^{-1}$
(Note that if the value for $A$ was required the $\ln k$ axis would need to be extended so the line could be extrapolated to give the value of $\ln k$ when $1 / T=$ zero. Alternatively the value for $E_{\mathrm{a}}$ can be put in the equation $\ln k=-E_{\mathrm{a}} / R T+\ln A$ for one of the values of $T$ and $A$ can be calculated directly.)
iv. (i) By interpolating the graph for when $T=210^{\circ} \mathrm{C} \ln k=-8.8$ so $k=1.5 \times \mathbf{1 0}^{\mathbf{- 4}} \mathbf{s}^{\mathbf{- 1}}$.
(ii) By extrapolating the graph for when $T=283^{\circ} \mathrm{C} \ln k=-3.7$ so $k=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{- 2}} \mathbf{s}^{\mathbf{- 1}}$.

