

HL Answers to Activation energy questions

1. i. Since the units of the rate constant are mol⁻¹ dm³ s⁻⁻¹ the overall order of the reaction must be two (i.e. second order).

```
ii. \ln k = -E_a/RT + \ln A
```

At 700 K: $\ln 1.30 = -(133.8 \times 1000)/(8.314 \times 700) + \ln A$ Hence $\ln A = \ln 1.30 + (133.8 \times 1000)/(8.314 \times 700)$

At T, $\ln 20.0 = -(133.8 \times 1000)/(8.314 \times T) + \ln A$ = $-(133.8 \times 1000)/(8.314 \times T) + \ln 1.30 + (133.8 \times 1000)/(8.314 \times 700)$ Hence $\ln 20.0 - \ln 1.30 = (133.8 \times 1000)/(8.314) \times (1/700 - 1/T)$ 2.7334 = 22.990 - 16093/TT = 16093/20.257 = 794 K (521 °C)

2. i. Since the units of the rate constant are s⁻¹ the overall order of the reaction must be one

(i.e. first order).

ii. Rate = k[H₃CNC]

iii. The temperatures need to be converted into Kelvin then a graph of ln k against 1/T must be plotted. The gradient is equal to $-E_a/R$

1/Temperature / K ⁻¹	ln k
2.16 x 10 ⁻³	- 10.59
2.12 x 10 ⁻³	- 9.85
1.99 x 10 ⁻³	- 7.37
1.91 x 10 ⁻³	- 5.76

The gradient = $-4.2/0.00022 = -19091 = -E_a/R$ $E_a = 19091 \times 8.314 = 159000 \text{ J} = 159 \text{ kJ mol}^{-1}$

(Note that if the value for A was required the ln k axis would need to be extended so the line could be extrapolated to give the value of lnk when 1/T = zero. Alternatively the value for E_a can be put in the equation $\ln k = -E_a/RT + \ln A$ for one of the values of T and A can be calculated directly.)

iv. (i) By interpolating the graph for when T = 210 °C ln k = -8.8 so $k = 1.5 \times 10^{-4} \text{ s}^{-1}$. (ii) By extrapolating the graph for when T = 283 °C ln k = -3.7 so $k = 2.5 \times 10^{-2} \text{ s}^{-1}$.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry