SL \& HL Answers to questions on Acid deposition

1. i. Carbonic acid is a weak acid so is only very slightly dissociated

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

so that, even in a saturated solution, the concentration of hydrogen ions can never give a pH lower than 5.6.
ii. Ten times more acidic (as the pH has decreased by one unit)
2. i. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}$
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{HNO}_{2}(\mathrm{aq})$
(nitric acid can also be formed from: $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$)
ii. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ then $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
3. Tree growth is stunted with thinning of the tops and loss and yellowing of leaves. This is due to the leaching of important nutrients, such as $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ and K^{+}from the soil. The loss of Mg^{2+} causes a reduction of chlorophyll which lowers the ability of the tree to photosynthesise. The leaching of Al^{3+} from rocks into the soil affects the ability of the roots of the tree to take up sufficient water and nutrients to survive.
4. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5. Calcium hydroxide and calcium oxide are both strong bases and can neutralise the acid.
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{CaO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
This increases the amount of calcium ions in the lake water and also helps to precipitate aluminium ions from the water.

