

HL Answers to Electrochemical cells (1) (AHL) questions on standard electrode potentials

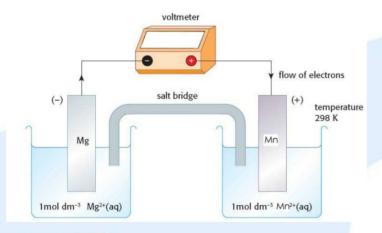
- **1. i.** Ni(s) + $2Ag^{+}(aq) \rightarrow Ni^{2+}(aq) + 2Ag(s)$
 - ii. Positive electrode: silver; Negative electrode: nickel (as the nickel half-cell has a more negative E⊕ value than the silver half-cell)
 - iii. Nickel metal is oxidized and silver ions are reduced.
 - iv. 1.06 V (being the difference between 0.26 V and + 0.80 V)
 - **v.** $\Delta G \ominus = -2 \text{ (mol) } \times 96500 \text{ (C mol}^{-1}) \times 1.06 \text{ (V)} = -204580 \text{ J} = -205 \text{ kJ}$
- 2. $Cr_2O_7^{2-}(aq) + 6I^-(aq) + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(I)$ (Acidified dichromate are a stronger oxidizing agent than iodine so oxidize iodide ions to iodine)
- 3. $Sn^{4+}(aq)/Sn^{2+}(aq) \mid \mid Fe^{3+}(aq)/Fe^{2+}(aq)$ $F\Theta = + 0.15 \text{ V}$ $F\Theta = + 0.77 \text{ V}$

Electrons flow from the $Sn^{4+}(aq)/Sn^{2+}(aq)$ half-cell to the $Fe^{3+}(aq)/Fe^{2+}(aq)$ half-cell so $Sn^{2+}(aq)$ can reduce $Fe^{3+}(aq)$ and the spontaneous reaction is :

$$Sn^{2+}(aq) + 2Fe^{3+}(aq) \rightarrow Sn^{4+}(aq) + 2Fe^{2+}(aq)$$
 $E \ominus_{cell} = 0.62 \text{ V}$

4. Cu(s)/Cu⁺(aq) | |Cu⁺(aq) / Cu²⁺(aq)

$$E \ominus = + 0.52 \text{ V}$$
 $E \ominus = + 0.15 \text{ V}$


Electrons flow from Cu⁺(aq) / Cu²⁺(aq) to Cu(s)/Cu⁺(aq)

Half-equations: $Cu^+(aq) \rightarrow Cu^{2+}(aq) + e^-$ and $Cu^+(aq) + e^- \rightarrow Cu(s)$

Overall redox equation: $2Cu^{+}(aq) \rightarrow Cu^{2+}(aq) + Cu(s) E^{\circ}_{cell} = 0.37 \text{ V}$

so the oxidation number of copper changes from +1 to 0 and +2, i.e. $Cu^{+}(aq)$ disproportionates.

5.

Cell potential = 1.18 V (the difference between – 2.37 V and – 1.19 V)