HL Answers to Equilibrium law questions

1. i. Initial concentration of $\mathrm{PCl}_{5}(\mathrm{~g})=\mathrm{a} / V$
```
Equilibrium concentration of \(\mathrm{PCl}_{5}(\mathrm{~g})=(\mathrm{a}-\mathrm{x}) / V\)
Equilibrium concentration of \(\mathrm{PCl}_{3}(\mathrm{~g})=\) equilibrium concentration of \(\mathrm{Cl}_{2}(\mathrm{~g})=x / V\)
\(K_{\mathrm{c}}=\left[\mathrm{PCl}_{3}(\mathrm{~g})\right]\left[\mathrm{Cl}_{2}(\mathrm{~g})\right] /\left[\mathrm{PCl}_{5}(\mathrm{~g})\right]\)
    \(=(x / V)^{2} /(a-x) / V=x^{2} / V^{2} /(a-x) / V=x^{2} /(a-x) V\)
```

ii. From the gas laws increasing the pressure at the same temperature can be achieved by reducing the volume. From the equation when V decreases x must also decrease to keep K_{c} constant hence increasing the pressure causes the position of equilibrium to shift back to the phosphorus(V) chloride side.
2. (a) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
(b) Initial concentration of $\mathrm{H}_{2} \mathrm{O}=54.06 / 18.02=3.0 \mathrm{~mol} \mathrm{dm}^{-3}$ Initial concentration of $\mathrm{CH}_{4}=16.04 / 16.04=1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ Equilibrium concentration of $\mathrm{H}_{2}=4.04 / 2.02=2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ 1 mol of CO_{2} is formed for every 4 mol of H_{2} so equilibrium concentration of $\mathrm{CO}_{2}=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
1 mol of $\mathrm{H}_{2} \mathrm{O}$ gives 2 mol of hydrogen so equilibrium concentration of steam

$$
=(3.0-1.0)=2.0 \mathrm{~mol} \mathrm{dm}^{-3}
$$

0.5 mol of CH_{4} gives 2 mol of hydrogen so equilibrium concentration of methane

$$
=(1.0-0.5)=0.5 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$K_{c}=\left[\mathrm{CO}_{2}(\mathrm{~g})\right]\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{4} /\left[\mathrm{CH}_{4}(\mathrm{~g})\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=0.5 \times 2.0^{4} / 0.5 \times 2.0^{2}=2.0^{2}=4.0$
(c) (i) the amount of hydrogen in the equilibrium increases
(ii) the value of the equilibrium constant increases
3. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

Let the volume of the container be $V \mathrm{dm}^{3}$
$K_{c}=[\mathrm{HI}(\mathrm{g})]^{2} /\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]=(2.4 / V)^{2} /(0.45 / V) \times(0.55 / V)=2.4^{2} / 0.45 \times 0.55=23$ (to 2 sig figs).
4. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Let the volume of the container be $V \mathrm{dm}^{3}$

$$
\begin{aligned}
K_{\mathrm{c}} & =\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right] /\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})\right]\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})\right] \\
& =(0.42 / V \times 0.42 / V) /(1-0.42) / V \times(0.5-0.42) / V=0.42^{2} / 0.58 \times 0.08=3.8
\end{aligned}
$$

5. (a) From the information given and from Section 12 of the data booklet

$$
\begin{aligned}
& \Delta H \ominus_{\text {reaction }}=[-480+(-286)]-[-484+(-278)]=-4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta S \ominus_{\text {reaction }}=(+259+70)-(+160+161)=8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \Delta G \ominus_{\text {reaction }}=\Delta H \ominus_{\text {reaction }}-T \Delta S \ominus_{\text {reaction }}=-4-(298 \times 8 / 1000)=-6.38 \mathrm{~kJ} \mathrm{~mol}^{-1}=-6380 \mathrm{~J} \mathrm{~mol}^{-1} \\
& \ln K_{\mathrm{c}}=-\Delta G \ominus_{\text {reaction }} / R T=6380 /(8.31 \times 298)=2.576 \\
& K_{\mathrm{c}}=\mathrm{e}^{2.576}=13.1
\end{aligned}
$$

(b) This is considerably different to the literature value of 4 . It is a consequence of the logarithmic part of the expression. Data book values for ΔH^{f} and $\mathrm{S} \ominus$ can vary slightly from source to source. There only needs to be a difference of $3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the calculated value of $\Delta G \ominus_{\text {reaction }}$ to make it 3380 instead of $6380 \mathrm{~J} \mathrm{~mol}^{-1}$ which would make $\ln K_{\mathrm{c}}$ have the value 1.36 which then gives the literature value of 4 for K_{c}.

