HL Answers to Electrons in atoms questions

1. (a) i. The second main energy level contains s and p sub-levels. The s sub-level is full after two electrons have been added successively ($\mathrm{Li} \& \mathrm{Be}$). The p sub-level is then successively filled until six electrons have been added to give Ne . After Ne the third level starts to be filled (3s) showing that the maximum number of electrons that can occupy the $2 p$ sub-level is 6 .
ii. It is easier to remove a p electron from $\mathrm{Al}\left([\mathrm{Ne}] 3 s^{2} 3 p^{1}\right)$ than it is to remove an s electron from $\mathrm{Mg}\left([\mathrm{Ne}] 3 \mathrm{~s}^{2}\right)$.
iii. K has a very low IE with the configuration [Ar$] 4 \mathrm{~s}^{1}$ so the 4 s fills before the 3 d sub-level.
iv. The regular increase from B to N then the drop between N and O shows that the three p orbitals are filled singly before the electrons are paired up.
(b) The values will all be higher and the graph is shifted to the left by 1 atomic number so the peaks will be given by $\mathrm{Li}^{+}, \mathrm{Na}^{+}$and K^{+}but the basic shape will remain the same.
2. i. For the $4^{\text {th }}$ ionization energy the equation is $\mathrm{V}^{3+}(\mathrm{g}) \rightarrow \mathrm{V}^{4+}(\mathrm{g})+\mathrm{e}^{-}$and for the $5^{\text {th }}$ ionization energy the equation is $\mathrm{V}^{4+}(\mathrm{g}) \rightarrow \mathrm{V}^{5+}(\mathrm{g})+\mathrm{e}^{-}$. The V^{4+} ion will attract electrons more strongly than the V^{3+} ion so the $5^{\text {th }}$ electron will be harder to remove.
ii. Both the $4^{\text {th }}$ and the $5^{\text {th }}$ ionisation energies involve the loss of 3 d electrons. The $5^{\text {th }}$ ionization gives the V^{5+} ion with an electronic configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ i.e. the same as the noble gas argon. It will be much more difficult to remove the $6^{\text {th }}$ electron as it involves removal of a $3 p$ electron and the $3 p$ level is much more strongly attracted to the nucleus than a 3d electron.
3. i. $E=h v=h c / \lambda=\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) / 9.12 \times 10^{-8}=2.18 \times 10^{-18} \mathrm{~J}$ for one electron.

$$
=2.18 \times 10^{-18} \times 6.02 \times 10^{23}=1.31 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}=1310 \mathrm{~kJ} \mathrm{~mol}^{-1}(\text { to } 3 \mathrm{SF})
$$

ii. The convergence line in the ultraviolet spectrum is due to the transition from $n=\infty$ to the lowest level $\mathrm{n}=1$ which is the level occupied by the one hydrogen electron in the ground state. The convergence line in the visible spectrum is due to the transition from $n=\infty$ to $n=2$.

