SL \& HL Answers to Rates of reaction questions

1. The rate of reaction is the change in the concentration of one of the products or of one the reactants divided by time.
2. The rate of the reaction depends upon the concentration of the reactants. As the reaction proceeds the concentration of the reactants decreases so there are less particles present to react.
3. volume
$/ \mathrm{cm}^{3}$

i. By taking the gradient at time $t=1.5$ minutes the rate $=26.5 / 2.45=10.8 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$
ii. Volume of hydrogen produced when the reaction was complete $=40.0 \mathrm{~cm}^{3}$

One mole of gas occupies $22700 \mathrm{~cm}^{3}$ at STP (273 K and 100 kPa)
Amount of magnesium used $=40 / 22700=1.76 \times 10^{-3} \mathrm{~mol}$
Mass of magnesium used $=1.76 \times 10^{-3} \times 24.31=4.28 \times 10^{-2} \mathrm{~g}$
iii. The graph will rise more steeply and reach $40.0 \mathrm{~cm}^{3}$ in less time but will still reach a maximum at $40.0 \mathrm{~cm}^{3}$.
4. By taking the gradient at time $t=0$ seconds, the rate (with respect to [reactant]) $=-0.200 / 12.0=-1.67 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.

